mirror of https://github.com/hpcaitech/ColossalAI
184 lines
6.9 KiB
Python
184 lines
6.9 KiB
Python
"""
|
|
Code for custom retriver with incremental update
|
|
"""
|
|
import copy
|
|
import hashlib
|
|
import os
|
|
from collections import defaultdict
|
|
from typing import Any, Callable, Dict, List
|
|
|
|
from colossalqa.mylogging import get_logger
|
|
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
|
from langchain.embeddings.base import Embeddings
|
|
from langchain.indexes import SQLRecordManager, index
|
|
from langchain.schema.retriever import BaseRetriever, Document
|
|
from langchain.vectorstores.base import VectorStore
|
|
from langchain.vectorstores.chroma import Chroma
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
class CustomRetriever(BaseRetriever):
|
|
"""
|
|
Custom retriever class with support for incremental update of indexes
|
|
"""
|
|
|
|
vector_stores: Dict[str, VectorStore] = {}
|
|
sql_index_database: Dict[str, str] = {}
|
|
record_managers: Dict[str, SQLRecordManager] = {}
|
|
sql_db_chains = []
|
|
k = 3
|
|
rephrase_handler: Callable = None
|
|
buffer: Dict = []
|
|
buffer_size: int = 5
|
|
verbose: bool = False
|
|
sql_file_path: str = None
|
|
|
|
@classmethod
|
|
def from_documents(
|
|
cls,
|
|
documents: List[Document],
|
|
embeddings: Embeddings,
|
|
**kwargs: Any,
|
|
) -> BaseRetriever:
|
|
k = kwargs.pop("k", 3)
|
|
cleanup = kwargs.pop("cleanup", "incremental")
|
|
mode = kwargs.pop("mode", "by_source")
|
|
ret = cls(k=k)
|
|
ret.add_documents(documents, embedding=embeddings, cleanup=cleanup, mode=mode)
|
|
return ret
|
|
|
|
def add_documents(
|
|
self,
|
|
docs: Dict[str, Document] = [],
|
|
cleanup: str = "incremental",
|
|
mode: str = "by_source",
|
|
embedding: Embeddings = None,
|
|
) -> None:
|
|
"""
|
|
Add documents to retriever
|
|
Args:
|
|
docs: the documents to add
|
|
cleanup: choose from "incremental" (update embeddings, skip existing embeddings) and "full" (destory and rebuild retriever)
|
|
mode: choose from "by source" (documents are grouped by source) and "merge" (documents are merged into one vector store)
|
|
"""
|
|
if cleanup == "full":
|
|
# Cleanup
|
|
for source in self.vector_stores:
|
|
os.remove(self.sql_index_database[source])
|
|
# Add documents
|
|
data_by_source = defaultdict(list)
|
|
if mode == "by_source":
|
|
for doc in docs:
|
|
data_by_source[doc.metadata["source"]].append(doc)
|
|
elif mode == "merge":
|
|
data_by_source["merged"] = docs
|
|
|
|
for source in data_by_source:
|
|
if source not in self.vector_stores:
|
|
hash_encoding = hashlib.sha3_224(source.encode()).hexdigest()
|
|
if os.path.exists(f"{self.sql_file_path}/{hash_encoding}.db"):
|
|
# Remove the stale file
|
|
os.remove(f"{self.sql_file_path}/{hash_encoding}.db")
|
|
# Create a new sql database to store indexes, sql files are stored in the same directory as the source file
|
|
sql_path = f"sqlite:///{self.sql_file_path}/{hash_encoding}.db"
|
|
# to record the sql database with their source as index
|
|
self.sql_index_database[source] = f"{self.sql_file_path}/{hash_encoding}.db"
|
|
|
|
self.vector_stores[source] = Chroma(embedding_function=embedding, collection_name=hash_encoding)
|
|
self.record_managers[source] = SQLRecordManager(source, db_url=sql_path)
|
|
self.record_managers[source].create_schema()
|
|
index(
|
|
data_by_source[source],
|
|
self.record_managers[source],
|
|
self.vector_stores[source],
|
|
cleanup=cleanup,
|
|
source_id_key="source",
|
|
)
|
|
|
|
def clear_documents(self):
|
|
"""Clear all document vectors from database"""
|
|
for source in self.vector_stores:
|
|
index(
|
|
[],
|
|
self.record_managers[source],
|
|
self.vector_stores[source],
|
|
cleanup="full",
|
|
source_id_key="source"
|
|
)
|
|
self.vector_stores = {}
|
|
self.sql_index_database = {}
|
|
self.record_managers = {}
|
|
|
|
def __del__(self):
|
|
for source in self.sql_index_database:
|
|
if os.path.exists(self.sql_index_database[source]):
|
|
os.remove(self.sql_index_database[source])
|
|
|
|
def set_sql_database_chain(self, db_chains) -> None:
|
|
"""
|
|
set sql agent chain to retrieve information from sql database
|
|
Not used in this version
|
|
"""
|
|
self.sql_db_chains = db_chains
|
|
|
|
def set_rephrase_handler(self, handler: Callable = None) -> None:
|
|
"""
|
|
Set a handler to preprocess the input str before feed into the retriever
|
|
"""
|
|
self.rephrase_handler = handler
|
|
|
|
def _get_relevant_documents(
|
|
self,
|
|
query: str,
|
|
*,
|
|
run_manager: CallbackManagerForRetrieverRun = None,
|
|
score_threshold: float = None,
|
|
return_scores: bool = False,
|
|
) -> List[Document]:
|
|
"""
|
|
This function is called by the retriever to get the relevant documents.
|
|
recent vistied queries are stored in buffer, if the query is in buffer, return the documents directly
|
|
|
|
Args:
|
|
query: the query to be searched
|
|
run_manager: the callback manager for retriever run
|
|
Returns:
|
|
documents: the relevant documents
|
|
"""
|
|
for buffered_doc in self.buffer:
|
|
if buffered_doc[0] == query:
|
|
return buffered_doc[1]
|
|
query_ = str(query)
|
|
# Use your existing retriever to get the documents
|
|
if self.rephrase_handler:
|
|
query = self.rephrase_handler(query)
|
|
documents = []
|
|
for k in self.vector_stores:
|
|
# Retrieve documents from each retriever
|
|
vectorstore = self.vector_stores[k]
|
|
documents.extend(vectorstore.similarity_search_with_score(query, self.k, score_threshold=score_threshold))
|
|
# print(documents)
|
|
# Return the top k documents among all retrievers
|
|
documents = sorted(documents, key=lambda x: x[1], reverse=False)[: self.k]
|
|
if return_scores:
|
|
# Return score
|
|
documents = copy.deepcopy(documents)
|
|
for doc in documents:
|
|
doc[0].metadata["score"] = doc[1]
|
|
documents = [doc[0] for doc in documents]
|
|
# Retrieve documents from sql database (not applicable for the local chains)
|
|
for sql_chain in self.sql_db_chains:
|
|
documents.append(
|
|
Document(
|
|
page_content=f"Query: {query} Answer: {sql_chain.run(query)}", metadata={"source": "sql_query"}
|
|
)
|
|
)
|
|
if len(self.buffer) < self.buffer_size:
|
|
self.buffer.append([query_, documents])
|
|
else:
|
|
self.buffer.pop(0)
|
|
self.buffer.append([query_, documents])
|
|
logger.info(f"retrieved documents:\n{str(documents)}", verbose=self.verbose)
|
|
return documents
|