ColossalAI/applications/ColossalMoE/colossal_moe/utils.py

85 lines
2.6 KiB
Python

import json
import os
from typing import Any, Dict, Tuple, Union
import torch
from torch.optim.lr_scheduler import _LRScheduler
from torch.optim.optimizer import Optimizer
from colossalai.booster import Booster
from colossalai.cluster import DistCoordinator
def move_to_cuda(batch, device):
return {k: v.to(device) for k, v in batch.items()}
def load_json(file_path: Union[str, os.PathLike]) -> Dict[str, Any]:
"""
Load file in JSON format
"""
with open(file=file_path, mode="r", encoding="utf-8") as fp:
return json.load(fp)
def save_json(data: Dict[str, Any], file_path: Union[str, os.PathLike]) -> None:
"""
Save as JSON format
"""
with open(file=file_path, mode="w", encoding="utf-8") as fp:
json.dump(data, fp=fp, ensure_ascii=False, indent=4)
def save_checkpoint(
save_dir: Union[str, os.PathLike],
booster: Booster,
model: torch.nn.Module,
optimizer: Optimizer,
lr_scheduler: _LRScheduler,
epoch: int,
step: int,
batch_size: int,
coordinator: DistCoordinator,
) -> None:
"""
Save model checkpoint, optimizer, LR scheduler and intermedidate running states.
"""
save_dir = os.path.join(save_dir, f"epoch-{epoch}_step-{step}")
os.makedirs(os.path.join(save_dir, "modeling"), exist_ok=True)
booster.save_model(model, os.path.join(save_dir, "modeling"), shard=True)
booster.save_optimizer(optimizer, os.path.join(save_dir, "optimizer"), shard=True)
booster.save_lr_scheduler(lr_scheduler, os.path.join(save_dir, "lr_scheduler"))
running_states = {
"epoch": epoch,
"step": step,
"sample_start_index": step * batch_size,
}
if coordinator.is_master():
save_json(running_states, os.path.join(save_dir, "running_states.json"))
def load_checkpoint(
load_dir: Union[str, os.PathLike],
booster: Booster,
model: torch.nn.Module,
optimizer: Optimizer,
lr_scheduler: _LRScheduler,
) -> Tuple[int, int, int]:
"""
Load model checkpoint, optimizer, LR scheduler and intermedidate running states.
"""
# Update booster params states.
booster.load_model(model, os.path.join(load_dir, "modeling"))
booster.load_optimizer(optimizer=optimizer, checkpoint=os.path.join(load_dir, "optimizer"))
booster.load_lr_scheduler(lr_scheduler=lr_scheduler, checkpoint=os.path.join(load_dir, "lr_scheduler"))
running_states = load_json(file_path=os.path.join(load_dir, "running_states.json"))
return (
running_states["epoch"],
running_states["step"],
running_states["sample_start_index"],
)