You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/extensions/csrc/kernel/cuda/multi_tensor_sgd_kernel.cu

168 lines
6.3 KiB

// modified from
// https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_sgd_kernel.cu
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
#include <assert.h>
#include <cuda_runtime.h>
#include "common/micros.h"
#include "multi_tensor_apply.cuh"
#define BLOCK_SIZE 512
#define ILP 4
/**
* Perform fused SGD on multiple buffers
* N: number of tensors
* tl[0] : gradients
* tl[1] : weights
* tl[2] : momentum buffers
* tl[3] : fp16 weights (if appropriate)
* wd : weight_decay (scalar)
* momentum : momentum (scalar)
* dampening : momentum dampening (scalar)
* lr : learning rate (scalar)
* nesterov : enable nesterov (bool)
* first run : necessary for proper momentum handling & init
* wd_after_momentum : apply weight decay _after_ momentum instead of before
**/
template <typename T_grad, typename T_weight>
struct SGDFunctor {
__device__ __forceinline__ void operator()(
int chunk_size, volatile int *noop_gmem, TensorListMetadata<3> &tl,
float wd, float momentum, float dampening, float lr, bool nesterov,
bool first_run, bool wd_after_momentum, float scale) {
// Early exit if we don't need to do anything
if (*noop_gmem) return;
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.sizes[tensor_loc];
T_grad *grad_in = (T_grad *)tl.addresses[0][tensor_loc];
grad_in += chunk_idx * chunk_size;
T_weight *weight_in = (T_weight *)tl.addresses[1][tensor_loc];
weight_in += chunk_idx * chunk_size;
T_weight *mom_in = (T_weight *)tl.addresses[2][tensor_loc];
mom_in += chunk_idx * chunk_size;
n -= chunk_idx * chunk_size;
// Non-divergent exit condition for the __syncthreads
float incoming_grads[ILP];
float incoming_weights[ILP];
float incoming_moms[ILP];
for (int i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * ILP) {
#pragma unroll
for (int ii = 0; ii < ILP; ii++) {
incoming_grads[ii] = 0;
incoming_weights[ii] = 0;
incoming_moms[ii] = 0;
int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size) {
incoming_grads[ii] = static_cast<float>(grad_in[i]) * scale;
incoming_weights[ii] = static_cast<float>(weight_in[i]);
incoming_moms[ii] = static_cast<float>(mom_in[i]);
}
}
// note for clarification to future michael:
// From a pure memory dependency perspective, there's likely no point unrolling
// the write loop, since writes just fire off once their LDGs arrive.
// Put another way, the STGs are dependent on the LDGs, but not on each other.
// There is still compute ILP benefit from unrolling the loop though.
#pragma unroll
for (int ii = 0; ii < ILP; ii++) {
int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size) {
// apply weight decay before momentum if necessary
if (wd != 0.f && !wd_after_momentum)
incoming_grads[ii] += wd * incoming_weights[ii];
if (momentum != 0.f) {
if (!first_run)
incoming_moms[ii] = incoming_moms[ii] * momentum +
(1.f - dampening) * incoming_grads[ii];
else // initialize momentums to current incoming grads
incoming_moms[ii] = incoming_grads[ii];
if (nesterov)
incoming_grads[ii] += momentum * incoming_moms[ii];
else
incoming_grads[ii] = incoming_moms[ii];
}
// Apply WD after momentum if desired
if (wd != 0.f && wd_after_momentum)
incoming_grads[ii] += wd * incoming_weights[ii];
// adjust the weight and write out
weight_in[i] += (-lr * incoming_grads[ii]);
// also write out the new momentum
if (momentum != 0.f) mom_in[i] = incoming_moms[ii];
}
}
}
}
};
void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
float wd, float momentum, float dampening, float lr,
bool nesterov, bool first_run,
bool wd_after_momentum, float scale) {
auto num_tensors = tensor_lists.size();
auto grad_type = tensor_lists[0][0].scalar_type();
auto weight_type = tensor_lists[1][0].scalar_type();
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(),
"expected noop flag to be on the same device as tensors");
// We have 3 possibilities to handle here, in terms of
// grad_type, param_type, momentum_type
// 1. fp16, fp16, fp16
// 2. fp32, fp32, fp32
// 3. fp16, fp32, fp32
// It's easier to hardcode these possibilities than to use
// switches etc. to handle the cross-product of cases where
// we don't want the majority of them.
// Case 1. fp16, fp16, fp16, No
if (grad_type == at::ScalarType::Half &&
weight_type == at::ScalarType::Half && num_tensors == 3) {
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<at::Half, at::Half>(), wd, momentum,
dampening, lr, nesterov, first_run, wd_after_momentum,
scale);
}
// Case 2. fp32, fp32, fp32
else if (grad_type == at::ScalarType::Float &&
weight_type == at::ScalarType::Float && num_tensors == 3) {
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<float, float>(), wd, momentum, dampening,
lr, nesterov, first_run, wd_after_momentum, scale);
}
// Case 3. fp16, fp32, fp32
else if (grad_type == at::ScalarType::Half &&
weight_type == at::ScalarType::Float && num_tensors == 3) {
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<at::Half, float>(), wd, momentum,
dampening, lr, nesterov, first_run, wd_after_momentum,
scale);
} else {
AT_ERROR(
"multi_tensor_sgd only supports some combinations of gradient & weight "
"types. Given: ",
"gradient: ", grad_type, ", weight: ", weight_type,
", num_lists: ", num_tensors);
}
AT_CUDA_CHECK(cudaGetLastError());
}