Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

36 lines
1.2 KiB

import torch
from datasets import load_dataset
from torch.utils.data import Dataset
class BeansDataset(Dataset):
def __init__(self, image_processor, tp_size=1, split="train"):
super().__init__()
self.image_processor = image_processor
self.ds = load_dataset("beans")[split]
self.label_names = self.ds.features["labels"].names
while len(self.label_names) % tp_size != 0:
# ensure that the number of labels is multiple of tp_size
self.label_names.append(f"pad_label_{len(self.label_names)}")
self.num_labels = len(self.label_names)
self.inputs = []
for example in self.ds:
self.inputs.append(self.process_example(example))
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
return self.inputs[idx]
def process_example(self, example):
input = self.image_processor(example["image"], return_tensors="pt")
input["labels"] = example["labels"]
return input
def beans_collator(batch):
return {
"pixel_values": torch.cat([data["pixel_values"] for data in batch], dim=0),
"labels": torch.tensor([data["labels"] for data in batch], dtype=torch.int64),
}