mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
842 lines
38 KiB
842 lines
38 KiB
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from torch.distributed import ProcessGroup |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.modeling_attn_mask_utils import ( |
|
AttentionMaskConverter, |
|
_prepare_4d_causal_attention_mask, |
|
_prepare_4d_causal_attention_mask_for_sdpa, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
CausalLMOutputWithPast, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.models.falcon.modeling_falcon import ( |
|
FalconForCausalLM, |
|
FalconForQuestionAnswering, |
|
FalconForSequenceClassification, |
|
FalconForTokenClassification, |
|
FalconModel, |
|
build_alibi_tensor, |
|
) |
|
from transformers.utils import logging |
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.shardformer.shard import ShardConfig |
|
|
|
from ..layer import cross_entropy_1d |
|
|
|
|
|
def build_falcon_alibi_tensor_fn(process_group: ProcessGroup) -> torch.Tensor: |
|
def build_falcon_alibi_tensor( |
|
self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype |
|
) -> torch.Tensor: |
|
""" |
|
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it |
|
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value |
|
`softmax(l+a) = softmax(l)`. Based on |
|
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 |
|
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. |
|
|
|
Args: |
|
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) |
|
attention_mask (`torch.Tensor`): |
|
Token-wise attention mask, this should be of shape (batch_size, max_seq_len). |
|
num_heads (`int`, *required*): |
|
number of heads |
|
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): |
|
dtype of the output tensor |
|
""" |
|
import math |
|
|
|
if dist.is_initialized(): |
|
world_size = dist.get_world_size(process_group) |
|
num_heads = num_heads * world_size |
|
|
|
batch_size, seq_length = attention_mask.shape |
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) |
|
base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 |
|
) |
|
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) |
|
slopes = torch.pow(base, powers) |
|
|
|
if closest_power_of_2 != num_heads: |
|
extra_base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), |
|
device=attention_mask.device, |
|
dtype=torch.float32, |
|
) |
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) |
|
extra_powers = torch.arange( |
|
1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32 |
|
) |
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) |
|
|
|
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention |
|
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) |
|
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) |
|
# => the query_length dimension will then be broadcasted correctly |
|
# This is more or less identical to T5's relative position bias: |
|
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 |
|
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] |
|
alibi = slopes[..., None] * arange_tensor |
|
if dist.is_initialized(): |
|
num_heads_per_rank = int(num_heads / dist.get_world_size(process_group)) |
|
offset = dist.get_rank(process_group) * num_heads_per_rank |
|
alibi = alibi.view(batch_size, num_heads, 1, seq_length) |
|
alibi = alibi[:, offset : num_heads_per_rank + offset, :, :] |
|
return alibi.reshape(batch_size * num_heads_per_rank, 1, seq_length).to(dtype) |
|
else: |
|
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) |
|
|
|
return build_falcon_alibi_tensor |
|
|
|
|
|
def get_tp_falcon_decoder_layer_forward(): |
|
from transformers.models.falcon.modeling_falcon import FalconDecoderLayer, dropout_add |
|
|
|
def forward( |
|
self: FalconDecoderLayer, |
|
hidden_states: torch.Tensor, |
|
alibi: Optional[torch.Tensor], |
|
attention_mask: torch.Tensor, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
**kwargs, |
|
): |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
residual = hidden_states |
|
|
|
if self.config.new_decoder_architecture: |
|
attention_layernorm_out = self.ln_attn(hidden_states) |
|
mlp_layernorm_out = self.ln_mlp(hidden_states) |
|
else: |
|
attention_layernorm_out = self.input_layernorm(hidden_states) |
|
|
|
# Self attention. |
|
attn_outputs = self.self_attention( |
|
attention_layernorm_out, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
alibi=alibi, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
**kwargs, |
|
) |
|
|
|
attention_output = attn_outputs[0] |
|
|
|
if not self.config.new_decoder_architecture: |
|
if self.config.parallel_attn: |
|
mlp_layernorm_out = attention_layernorm_out |
|
else: |
|
residual = dropout_add( |
|
attention_output, residual, self.config.attention_dropout, training=self.training |
|
) |
|
mlp_layernorm_out = self.post_attention_layernorm(residual) |
|
|
|
outputs = attn_outputs[1:] |
|
|
|
# MLP. |
|
mlp_output = self.mlp(mlp_layernorm_out) |
|
|
|
if self.config.new_decoder_architecture or self.config.parallel_attn: |
|
mlp_output = mlp_output + attention_output |
|
|
|
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training) |
|
|
|
if use_cache: |
|
outputs = (output,) + outputs |
|
else: |
|
outputs = (output,) + outputs[1:] |
|
|
|
return outputs # hidden_states, present, attentions |
|
|
|
return forward |
|
|
|
|
|
class FalconPipelineForwards: |
|
""" |
|
This class serves as a micro library for falcon pipeline forwards. |
|
""" |
|
|
|
@staticmethod |
|
def falcon_model_forward( |
|
self: FalconModel, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: |
|
logger = logging.get_logger(__name__) |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
if use_cache: |
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
|
use_cache = False |
|
|
|
if past_key_values is not None: |
|
logger.warning_once("past_key_values is not supported for pipeline models at the moment.") |
|
past_key_values = None |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
# case: First stage of training |
|
if stage_manager.is_first_stage(): |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
hidden_states = inputs_embeds |
|
else: |
|
input_shape = hidden_states.shape[:-1] |
|
batch_size, seq_length = input_shape |
|
|
|
if past_key_values is None: |
|
past_key_values = tuple([None] * len(self.h)) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
# Compute alibi tensor: check build_alibi_tensor documentation |
|
past_key_values_length = 0 |
|
if past_key_values[0] is not None: |
|
past_key_values_length = past_key_values[0][0].shape[-2] |
|
|
|
if self.use_alibi: |
|
mask = ( |
|
torch.ones( |
|
(batch_size, seq_length + past_key_values_length), device=inputs_embeds.device, dtype=torch.long |
|
) |
|
if attention_mask is None |
|
else attention_mask |
|
) |
|
alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype) |
|
else: |
|
alibi = None |
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
if self._use_flash_attention_2: |
|
# 2d mask is passed through the layers |
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._use_sdpa and not output_attentions: |
|
# output_attentions=True can not be supported when using SDPA, and we fall back on |
|
# the manual implementation that requires a 4D causal mask in all cases. |
|
if alibi is None: |
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
elif head_mask is None: |
|
alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:]) |
|
|
|
attention_mask_2d = attention_mask |
|
# We don't call _prepare_4d_causal_attention_mask_for_sdpa as we need to mask alibi using the 4D attention_mask untouched. |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
# We take care to integrate alibi bias in the attention_mask here. |
|
if attention_mask_2d is None: |
|
attention_mask = alibi / math.sqrt(self.config.hidden_size // self.num_heads) |
|
else: |
|
attention_mask = torch.masked_fill( |
|
alibi / math.sqrt(self.config.hidden_size // self.num_heads), |
|
attention_mask < -1, |
|
torch.finfo(alibi.dtype).min, |
|
) |
|
|
|
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend |
|
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213 |
|
if seq_length > 1: |
|
attention_mask = AttentionMaskConverter._unmask_unattended( |
|
attention_mask, attention_mask_2d, unmasked_value=0.0 |
|
) |
|
else: |
|
# PyTorch SDPA does not support head_mask, we fall back on the eager implementation in this case. |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
else: |
|
# 4d mask is passed through the layers |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
# Prepare head mask if needed |
|
# 1.0 in head_mask indicate we keep the head |
|
# attention_probs has shape batch_size x num_heads x N x N |
|
# head_mask has shape n_layer x batch x num_heads x N x N |
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1] |
|
for i, (block, layer_past) in enumerate( |
|
zip(self.h[start_idx:end_idx], past_key_values[start_idx:end_idx]), start=start_idx |
|
): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs = self._gradient_checkpointing_func( |
|
block.__call__, |
|
hidden_states, |
|
alibi, |
|
attention_mask, |
|
position_ids, |
|
head_mask[i], |
|
layer_past, |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
alibi=alibi, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
if stage_manager.is_last_stage(): |
|
# Add last hidden state |
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if stage_manager.is_last_stage(): |
|
if not return_dict: |
|
return tuple( |
|
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
else: |
|
# always return dict for imediate stage |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def falcon_for_causal_lm_forward( |
|
self: FalconForCausalLM, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
transformer_outputs = FalconPipelineForwards.falcon_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
past_key_values = None |
|
if stage_manager.is_last_stage(): |
|
hidden_states = transformer_outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
# Shift so that tokens < n predict n |
|
labels = labels.to(lm_logits.device) |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
batch_size, seq_length, vocab_size = shift_logits.shape |
|
# Flatten the tokens |
|
loss_fct = CrossEntropyLoss() |
|
if shard_config.enable_tensor_parallelism and shard_config.parallel_output: |
|
new_vocab_size = shift_logits.shape[-1] |
|
shift_logits = shift_logits.view(-1, new_vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
loss = cross_entropy_1d( |
|
shift_logits, |
|
shift_labels, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
vocab_size=self.lm_head.out_features, |
|
dtype=self.transformer.dtype, |
|
) |
|
else: |
|
loss = loss_fct( |
|
shift_logits.view(batch_size * seq_length, vocab_size), |
|
shift_labels.view(batch_size * seq_length), |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
else: |
|
hidden_states = transformer_outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def falcon_for_sequence_classification_forward( |
|
self: FalconForSequenceClassification, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
transformer_outputs = FalconPipelineForwards.falcon_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
past_key_values = None |
|
if stage_manager.is_last_stage(): |
|
batch_size = hidden_states.shape[0] |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1).to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
else: |
|
hidden_states = transformer_outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def falcon_for_token_classification_forward( |
|
self: FalconForTokenClassification, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
transformer_outputs = FalconPipelineForwards.falcon_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
past_key_values = None |
|
|
|
if stage_manager.is_last_stage(): |
|
hidden_states = transformer_outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
batch_size, seq_length = labels.shape |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + transformer_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
else: |
|
hidden_states = transformer_outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def falcon_for_question_answering_forward( |
|
self: FalconForQuestionAnswering, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Tuple, QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
outputs = FalconPipelineForwards.falcon_model_forward( |
|
self.transformer, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
if stage_manager.is_last_stage(): |
|
sequence_output = outputs[0] |
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
# If we are on multi-GPU, split add a dimension |
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms |
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
else: |
|
hidden_states = outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
|
|
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig): |
|
from transformers import FalconForCausalLM |
|
|
|
def forward( |
|
self: FalconForCausalLM, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
past_key_values = None |
|
hidden_states = transformer_outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
loss = None |
|
if labels is not None: |
|
# Shift so that tokens < n predict n |
|
labels = labels.to(lm_logits.device) |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
batch_size, seq_length, vocab_size = shift_logits.shape |
|
# Flatten the tokens |
|
new_vocab_size = shift_logits.shape[-1] |
|
shift_logits = shift_logits.view(-1, new_vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
loss = cross_entropy_1d( |
|
shift_logits, |
|
shift_labels, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
vocab_size=self.lm_head.out_features, |
|
dtype=self.transformer.dtype, |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
return forward
|
|
|