mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
441 lines
20 KiB
441 lines
20 KiB
import time |
|
from functools import partial |
|
from typing import Any, Iterable, Optional, Union |
|
|
|
import torch |
|
import torch.cuda |
|
from torch.nn import Module |
|
from torch.utils._pytree import tree_map |
|
|
|
from colossalai.accelerator import get_accelerator |
|
from colossalai.inference.engine.microbatch_manager import MicroBatchManager, Status |
|
from colossalai.pipeline.p2p import PipelineP2PCommunication |
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
|
|
from ._utils import get_batch_size, get_micro_batch, model_forward, to_device |
|
from .base import PipelineSchedule |
|
|
|
|
|
class ActionIntervalBuffer: |
|
""" |
|
The buffer to save the interval hidden states and new token for stage to use. |
|
|
|
""" |
|
|
|
def __int__(self): |
|
self.hidden_states = None |
|
self.new_token = None |
|
|
|
def clear(self): |
|
self.hidden_states = None |
|
self.new_token = None |
|
|
|
|
|
class GenerateSchedule(PipelineSchedule): |
|
""" |
|
GenerateSchedule is a class that handles the pipeline parallel inference. |
|
In our schedule, we place tie weight layer, embedding and lm_head in the same device to save space, so in |
|
this schedule, the out for each encoding progress is on rank0. |
|
|
|
Args: |
|
stage_manager (`PipelineStageManager`): Pipeline stage manager. |
|
mb_manager (`MicroBatchManager`): Micro batch manager. |
|
verbose (bool): Whether to verbose the information of the pipeline. |
|
""" |
|
|
|
def __init__(self, stage_manager: PipelineStageManager, mb_manager: MicroBatchManager, verbose: bool) -> None: |
|
super().__init__(stage_manager) |
|
self.comm = PipelineP2PCommunication(stage_manager) |
|
self.mb_manager = mb_manager |
|
self.microbatch_size = mb_manager.micro_batch_size |
|
self.batch: Optional[Any] = None |
|
self.batch_size: Optional[int] = None |
|
self.microbatch_offset: Optional[int] = None |
|
self.num_microbatches: Optional[int] = None |
|
self.action_interval_buffer = ActionIntervalBuffer() |
|
self.verbose = verbose |
|
self.timestamps = None |
|
self.comm_dtype = None |
|
|
|
def load_batch(self, data_iter: Iterable, device: Optional[torch.device] = None) -> None: |
|
"""Load a batch from data iterator. |
|
|
|
Args: |
|
data_iter (Iterable): Data iterator. |
|
device (Optional[torch.device], optional): Target device. Defaults to None. |
|
""" |
|
batch = next(data_iter) |
|
if device is not None: |
|
batch = tree_map(partial(to_device, device=device), batch) |
|
self.batch = batch |
|
self.batch_size = get_batch_size(batch) |
|
if self.stage_manager.num_stages == 1: |
|
self.microbatch_size = self.batch_size |
|
self.microbatch_offset = 0 |
|
assert ( |
|
self.batch_size % self.microbatch_size == 0 |
|
), f"Batch size should divided by the number of microbatches, {self.batch_size}, {self.num_microbatches}" |
|
self.num_microbatches = self.batch_size // self.microbatch_size |
|
self.round = self.num_microbatches // self.stage_manager.num_stages |
|
|
|
def load_micro_batch(self) -> Any: |
|
"""Load a micro batch from the current batch. |
|
|
|
Returns: |
|
Any: Micro batch. |
|
""" |
|
micro_batch = get_micro_batch(self.batch, self.microbatch_offset, self.microbatch_size) |
|
self.microbatch_offset += self.microbatch_size |
|
return tree_map(partial(to_device, device=get_accelerator().get_current_device()), micro_batch) |
|
|
|
def _prepare_inputs_for_interval_stage(self): |
|
""" |
|
Prepare inputs for interval stage, for all the interval stage, the inputs is just the past_key_values |
|
|
|
Returns: |
|
dict: inputs for interval stage, `{'past_key_values': torch.Tensor}` or `None` |
|
""" |
|
model_inputs = {"infer_state": self.mb_manager.cur_description.infer_state} |
|
return model_inputs |
|
|
|
def _prepare_inputs_for_new_token(self, new_token: torch.Tensor): |
|
""" |
|
Prepare inputs for new token, the inputs is a dict with `input_ids`, `attention_mask` and `past_key_values` |
|
`input_ids` is the new token, `attention_mask` is the previous mask add `1` in the end, |
|
`past_key_values` is the past_key_values save in the micro batch manager |
|
|
|
Returns: |
|
dict: inputs for new token, `{'input_ids': torch.Tensor, 'attention_mask': torch.Tensor, 'past_key_values': torch.Tensor}` |
|
""" |
|
new_mask = self.mb_manager.cur_description.attn_mask |
|
|
|
return dict(input_ids=new_token, attention_mask=new_mask) |
|
|
|
def _get_token_id(self, hidden_state: torch.Tensor) -> torch.Tensor: |
|
last_hidden_state = hidden_state[:, -1] |
|
input_ids = torch.argmax(last_hidden_state, dim=-1).unsqueeze(1) |
|
return input_ids |
|
|
|
def _recv_pre_stage(self) -> Any: |
|
""" |
|
Receive the output from previous stage |
|
|
|
Returns: |
|
Any: The output from previous stage |
|
""" |
|
if self.stage_manager.num_stages == 2: |
|
return self.comm.p2p_recv() |
|
return self.comm.recv_forward() |
|
|
|
def _init_infer_state_action(self) -> None: |
|
""" |
|
This action is only for no first stage, to load batch and init infer_state. |
|
1.Load micro_batch 2.Use the current micro_batch to init the current infer_state |
|
""" |
|
inputs_dict = self.load_micro_batch() |
|
self.mb_manager.add_description(inputs_dict) |
|
|
|
def _load_stage_action(self, model: Module) -> None: |
|
""" |
|
This action is only for first stage, load, init and do forward. |
|
1.load micro_batch 2.do the forward 3.step to update |
|
""" |
|
inputs_dict = self.load_micro_batch() |
|
self.mb_manager.add_description(inputs_dict) |
|
if self.verbose and self.stage_manager.is_first_stage(): |
|
torch.cuda.synchronize() |
|
self.timestamps[self.mb_manager.idx].append(time.time()) |
|
interval_inputs = {"infer_state": self.mb_manager.cur_infer_state} |
|
output_dict = model_forward(model, inputs_dict, interval_inputs) |
|
|
|
self.action_interval_buffer.hidden_states = output_dict["hidden_states"] |
|
|
|
def _gen_token_action(self, model: Module): |
|
""" |
|
This action is only for first stage |
|
1.do the forward with hidden_states to generate new tokens 2.step to update |
|
""" |
|
hidden_states = self.action_interval_buffer.hidden_states |
|
assert hidden_states is not None, "When first stage in GENERATE phase, the hidden states should not be None" |
|
interval_inputs = {"hidden_states": hidden_states, "infer_state": self.mb_manager.cur_infer_state} |
|
logits = model_forward(model, None, interval_inputs) |
|
if self.verbose and self.stage_manager.is_first_stage(): |
|
torch.cuda.synchronize() |
|
self.timestamps[self.mb_manager.idx].append(time.time()) |
|
assert ( |
|
"logits" in logits |
|
), f"When first stage in GENERATE phase, the output should have attribute `logits`, but has {logits.keys()}" |
|
new_token = self._get_token_id(logits["logits"]) |
|
|
|
self.mb_manager.step(new_token) |
|
self.action_interval_buffer.new_token = new_token |
|
self.action_interval_buffer.hidden_states = None |
|
|
|
def _head_encoding_action(self, model: Module): |
|
""" |
|
In this action, 1.prepare inputs for encoding for first stage. 2.do the forward to get hidden states 3.step to update |
|
""" |
|
new_token = self.action_interval_buffer.new_token |
|
assert new_token is not None, "When first stage in GENERATE phase, the new token should not be None" |
|
inputs_dict = self._prepare_inputs_for_new_token(new_token) |
|
interval_inputs = {"infer_state": self.mb_manager.cur_infer_state} |
|
output_dict = model_forward(model, inputs_dict, interval_inputs) |
|
|
|
self.action_interval_buffer.hidden_states = output_dict["hidden_states"] |
|
|
|
def _body_encoding_action(self, model: Module): |
|
hidden_states = self.action_interval_buffer.hidden_states |
|
assert hidden_states is not None, "When not first stage, the hidden states should not be None" |
|
interval_inputs = {"hidden_states": hidden_states, "infer_state": self.mb_manager.cur_infer_state} |
|
output_dict = model_forward(model, None, interval_inputs) |
|
|
|
self.action_interval_buffer.hidden_states = output_dict["hidden_states"] |
|
|
|
def _comm_action(self, recv_pre: bool) -> torch.Tensor: |
|
""" |
|
In this action, 1.receive the hidden_states from previous stage 2.send the hidden_states to next stage |
|
""" |
|
hidden_states = self.action_interval_buffer.hidden_states |
|
ret = self.comm.p2p_communicate(hidden_states, recv_pre, comm_dtype=self.comm_dtype) |
|
|
|
self.action_interval_buffer.hidden_states = ret |
|
|
|
def _gen_action(self, model: Module): |
|
""" |
|
In p2p step method, we use `P2POp` asynchronous communication method, so the communication need to be done |
|
at the begin of each microbatch, it's a more clear way to use an action list to do so. In this function, it will |
|
generate a sequence action for current state, and do the action one by one. |
|
|
|
Args: |
|
model (Module): Model to be run. |
|
|
|
Returns: |
|
List[Callable]: A list of action, each action is a callable function, and it will be called in order. |
|
""" |
|
actions = [] |
|
if self.stage_manager.is_first_stage(): |
|
if self.mb_manager.cur_state is Status.PREFILL: |
|
actions.append(partial(self._comm_action, False)) |
|
actions.append(partial(self._load_stage_action, model)) |
|
elif self.stage_manager.is_first_stage() and self.mb_manager.cur_state is Status.GENERATE: |
|
actions.append(partial(self._comm_action, True)) |
|
actions.append(partial(self._gen_token_action, model)) |
|
actions.append(partial(self._head_encoding_action, model)) |
|
elif self.stage_manager.is_first_stage() and self.mb_manager.cur_state is Status.COOLDOWN: |
|
actions.append(partial(self._comm_action, True)) |
|
actions.append(partial(self._gen_token_action, model)) |
|
# other stage |
|
else: |
|
if self.mb_manager.cur_state is Status.PREFILL: |
|
actions.append(partial(self._init_infer_state_action)) |
|
actions.append(partial(self._comm_action, True)) |
|
actions.append(partial(self._body_encoding_action, model)) |
|
|
|
return actions |
|
|
|
def _gen_one_stage_action(self, model: Module): |
|
""" |
|
In this function, it will generate a sequence action for current state, and do the action one by one. |
|
|
|
Args: |
|
model (Module): Model to be run. |
|
|
|
Returns: |
|
List[Callable]: A list of action, each action is a callable function, and it will be called in order. |
|
""" |
|
actions = [] |
|
|
|
if self.mb_manager.cur_state is Status.PREFILL: |
|
actions.append(partial(self._load_stage_action, model)) |
|
elif self.mb_manager.cur_state is Status.GENERATE: |
|
actions.append(partial(self._gen_token_action, model)) |
|
actions.append(partial(self._head_encoding_action, model)) |
|
elif self.mb_manager.cur_state is Status.COOLDOWN: |
|
actions.append(partial(self._gen_token_action, model)) |
|
|
|
return actions |
|
|
|
def generate_step(self, model: Module, data_iter: Iterable) -> Union[torch.Tensor, dict]: |
|
if self.stage_manager.num_stages == 1: |
|
return self.generate_step_one_stage(model, data_iter) |
|
elif self.stage_manager.num_stages == 2: |
|
return self.generate_step_p2p(model, data_iter) |
|
else: |
|
return self.generate_step_broadcast(model, data_iter) |
|
|
|
@torch.no_grad() |
|
def generate_step_one_stage(self, model: Module, data_iter: Iterable) -> Union[torch.Tensor, dict]: |
|
""" |
|
Forward one step of the pipeline, when pipeline size is 1. |
|
|
|
Args: |
|
model (Module): Model to be run. |
|
data_iter (Iterable): Data iterator. |
|
|
|
Returns: |
|
Union[torch.Tensor, dict]: The intermediate output (dict) of the current stage. If it is the last stage, the output is the loss (Tensor). |
|
""" |
|
output_sequence = [] |
|
self.load_batch(data_iter) |
|
model.eval() |
|
self.comm_dtype = model.dtype |
|
|
|
whole_timestamp = [] |
|
|
|
# run by round |
|
for _ in range(self.round): |
|
self.timestamps = [[] for _ in range(self.stage_manager.num_stages)] if self.verbose else None |
|
self.action_interval_buffer.clear() |
|
while self.mb_manager.is_micro_batch_done() is False: |
|
actions = self._gen_one_stage_action(model) |
|
for action in actions: |
|
action() |
|
self.mb_manager.next() |
|
# All microbatch in current round is DONE |
|
output_sequence.extend(self.mb_manager.export_new_tokens()) |
|
|
|
self.mb_manager.clear() |
|
if self.verbose: |
|
whole_timestamp.extend(self.timestamps) |
|
|
|
return output_sequence, whole_timestamp |
|
|
|
@torch.no_grad() |
|
def generate_step_p2p(self, model: Module, data_iter: Iterable) -> Union[torch.Tensor, dict]: |
|
""" |
|
Forward one step of the pipeline, when pipeline size is 2, the schedule is a circle, broadcast communication will be |
|
blocked, so we use `P2POp` asynchronous communication method. |
|
|
|
Args: |
|
model (Module): Model to be run. |
|
data_iter (Iterable): Data iterator. |
|
|
|
Returns: |
|
Union[torch.Tensor, dict]: The intermediate output (dict) of the current stage. If it is the last stage, the output is the loss (Tensor). |
|
""" |
|
output_sequence = [] |
|
self.load_batch(data_iter) |
|
model.eval() |
|
self.comm_dtype = model.dtype |
|
|
|
whole_timestamp = [] |
|
|
|
# run by round |
|
for _ in range(self.round): |
|
self.timestamps = ( |
|
[[] for _ in range(self.stage_manager.num_stages)] |
|
if self.verbose and self.stage_manager.is_first_stage() |
|
else None |
|
) |
|
self.action_interval_buffer.clear() |
|
while self.mb_manager.is_micro_batch_done() is False: |
|
actions = self._gen_action(model) |
|
for action in actions: |
|
action() |
|
self.mb_manager.next() |
|
# All microbatch in current round is DONE |
|
if self.stage_manager.is_first_stage(): |
|
output_sequence.extend(self.mb_manager.export_new_tokens()) |
|
else: |
|
self._comm_action(False) |
|
self.mb_manager.clear() |
|
if self.verbose and self.stage_manager.is_first_stage(): |
|
whole_timestamp.extend(self.timestamps) |
|
|
|
return output_sequence, whole_timestamp |
|
|
|
@torch.no_grad() |
|
def generate_step_broadcast(self, model: Module, data_iter: Iterable) -> Union[torch.Tensor, dict]: |
|
""" |
|
Forward one step of the pipeline |
|
|
|
Args: |
|
model (Module): Model to be run. |
|
data_iter (Iterable): Data iterator. |
|
|
|
Returns: |
|
Union[torch.Tensor, dict]: The intermediate output (dict) of the current stage. If it is the last stage, the output is the loss (Tensor). |
|
""" |
|
output_sequence = [] |
|
self.load_batch(data_iter) |
|
model.eval() |
|
|
|
whole_timestamp = [] |
|
# run by round |
|
for _ in range(self.round): |
|
self.timestamps = ( |
|
[[] for _ in range(self.stage_manager.num_stages)] |
|
if self.verbose and self.stage_manager.is_first_stage() |
|
else None |
|
) |
|
while self.mb_manager.is_micro_batch_done() is False: |
|
inputs_dict = None |
|
new_token = None |
|
output_dict = None |
|
|
|
# First stage and in PREFILL phase, just load the inputs |
|
if self.stage_manager.is_first_stage() and self.mb_manager.cur_state is Status.PREFILL: |
|
inputs_dict = self.load_micro_batch() |
|
if self.verbose and self.stage_manager.is_first_stage(): |
|
torch.cuda.synchronize() |
|
self.timestamps[self.mb_manager.idx].append(time.time()) |
|
self.mb_manager.add_description(inputs_dict) |
|
interval_inputs = {"infer_state": self.mb_manager.cur_infer_state} |
|
output_dict = model_forward(model, inputs_dict, interval_inputs) |
|
# In GENERATE phase |
|
else: |
|
# Get hidden_states from previous stage |
|
hidden_states = self.comm.recv_forward() |
|
if self.stage_manager.is_first_stage(): |
|
# First just generate a new token |
|
assert ( |
|
hidden_states is not None |
|
), "When first stage in GENERATE phase, the hidden states should not be None" |
|
interval_inputs = { |
|
"hidden_states": hidden_states["hidden_states"], |
|
"infer_state": self.mb_manager.cur_infer_state, |
|
} |
|
logits = model_forward(model, None, interval_inputs) |
|
if self.verbose and self.stage_manager.is_first_stage(): |
|
torch.cuda.synchronize() |
|
self.timestamps[self.mb_manager.idx].append(time.time()) |
|
assert ( |
|
"logits" in logits |
|
), f"When first stage in GENERATE phase, the output should have attribute `logits`, but has {logits.keys()}" |
|
new_token = self._get_token_id(logits["logits"]) |
|
self.mb_manager.step(new_token) |
|
# If the current micro batch is not DONE, go through blocks |
|
if self.mb_manager.cur_state in (Status.GENERATE, Status.COOLDOWN): |
|
inputs_dict = self._prepare_inputs_for_new_token(new_token) |
|
interval_inputs = {"infer_state": self.mb_manager.cur_infer_state} |
|
output_dict = model_forward(model, inputs_dict, interval_inputs) |
|
else: |
|
assert hidden_states is not None, "When not first stage, the hidden states should not be None" |
|
# inputs_dict = self._prepare_inputs_for_interval_stage() |
|
inputs_dict = None |
|
if self.mb_manager.cur_state is Status.PREFILL: |
|
inputs_dict = self.load_micro_batch() |
|
self.mb_manager.add_description(inputs_dict) |
|
interval_inputs = { |
|
"hidden_states": hidden_states["hidden_states"], |
|
"infer_state": self.mb_manager.cur_infer_state, |
|
} |
|
output_dict = model_forward(model, inputs_dict, interval_inputs) |
|
|
|
# Current microbatch is not DONE, send hidden_state to next stage |
|
if not self.stage_manager.is_first_stage() or self.mb_manager.cur_state in ( |
|
Status.GENERATE, |
|
Status.COOLDOWN, |
|
): |
|
self.comm.send_forward({"hidden_states": output_dict["hidden_states"]}) |
|
|
|
self.mb_manager.next() |
|
|
|
# All microbatch in current round is DONE |
|
if self.stage_manager.is_first_stage(): |
|
output_sequence.extend(self.mb_manager.export_new_tokens()) |
|
self.mb_manager.clear() |
|
if self.verbose and self.stage_manager.is_first_stage(): |
|
whole_timestamp.extend(self.timestamps) |
|
|
|
return output_sequence, whole_timestamp
|
|
|