You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/legacy/engine/schedule/_base_schedule.py

143 lines
5.7 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from abc import ABC, abstractmethod
from typing import Callable, Iterable
import torch
from colossalai.accelerator import get_accelerator
from colossalai.logging import get_dist_logger
class BaseSchedule(ABC):
"""A basic helper class to control the process of training or evaluation.
It mainly composes of forward_backward_step for gradient backward and
optimizer_step for parameters update.
For the convenience to enable FP16, we aggregate all codes that contain the
control of FP16 in class schedule.
Args:
data_process_func (Callable, optional): The preprocessing function which receives a batch of data and arranges them into data and label.
"""
def __init__(self, data_process_func: Callable = None):
self.logger = get_dist_logger()
self.data_process_func = data_process_func
@staticmethod
def _move_tensor(element):
if torch.is_tensor(element):
if not element.is_cuda:
return element.to(get_accelerator().get_current_device()).detach()
return element
def _move_to_device(self, data):
if isinstance(data, torch.Tensor):
data = data.to(get_accelerator().get_current_device())
elif isinstance(data, (list, tuple)):
data_to_return = []
for element in data:
if isinstance(element, dict):
data_to_return.append({k: self._move_tensor(v) for k, v in element.items()})
else:
data_to_return.append(self._move_tensor(element))
data = data_to_return
elif isinstance(data, dict):
data = {k: self._move_tensor(v) for k, v in data.items()}
else:
raise TypeError(
f"Expected batch data to be of type torch.Tensor, list, tuple, or dict, but got {type(data)}"
)
return data
def _get_batch_size(self, data):
if isinstance(data, torch.Tensor):
return data.size(0)
elif isinstance(data, (list, tuple)):
if isinstance(data[0], dict):
return data[0][list(data[0].keys())[0]].size(0)
return data[0].size(0)
elif isinstance(data, dict):
return data[list(data.keys())[0]].size(0)
def load_batch(self, data_iter, to_gpu=True):
"""Loads a batch from data iterator. It returns the data and labels which are
already in the same GPU as where the model's.
Args:
data_iter (Iterable): Data iterator from which get a batch of data, obtained by calling iter(dataloader).
to_gpu (bool, optional): Whether the data should be moved to GPU
Returns:
Tuple (:class:`Tensor`, :class:`torch.Tensor`): A tuple of (data, label).
"""
if data_iter is None:
raise RuntimeError("Dataloader is not defined.")
batch_data = next(data_iter)
if to_gpu:
batch_data = self._move_to_device(batch_data)
self.batch_size = self._get_batch_size(batch_data)
return batch_data
def pre_processing(self, engine):
"""To perform actions before running the schedule."""
@abstractmethod
def forward_backward_step(
self,
engine,
data_iter: Iterable,
forward_only: bool,
return_loss: bool = True,
return_output_label: bool = True,
):
"""The process function over a batch of dataset for training or evaluation.
Args:
engine (colossalai.legacy.engine.Engine): Colossalai engine for training and inference.
data_iter (Iterable): Data iterator from which get a batch of data, obtained by calling iter(dataloader).
forward_only (bool): If True, the process won't include backward.
return_loss (bool, optional): If False, the loss won't be returned.
return_output_label (bool, optional): If False, the output and label won't be returned.
"""
@staticmethod
def _call_engine(engine, inputs):
if isinstance(inputs, torch.Tensor):
return engine(inputs)
elif isinstance(inputs, (list, tuple)):
return engine(*inputs)
elif isinstance(inputs, dict):
return engine(**inputs)
else:
TypeError(
f"Expected engine inputs to be of type torch.Tensor, list, tuple, or dict, but got {type(inputs)}"
)
@staticmethod
def _call_engine_criterion(engine, outputs, labels):
assert isinstance(
outputs, (torch.Tensor, list, tuple, dict)
), f"Expect output of model is (torch.Tensor, list, tuple), got {type(outputs)}"
if isinstance(outputs, torch.Tensor):
outputs = (outputs,)
if isinstance(labels, torch.Tensor):
labels = (labels,)
if isinstance(outputs, (tuple, list)) and isinstance(labels, (tuple, list)):
return engine.criterion(*outputs, *labels)
elif isinstance(outputs, (tuple, list)) and isinstance(labels, dict):
return engine.criterion(*outputs, **labels)
elif isinstance(outputs, dict) and isinstance(labels, dict):
return engine.criterion(**outputs, **labels)
elif isinstance(outputs, dict) and isinstance(labels, (list, tuple)):
raise ValueError(f"Expected labels to be a dict when the model outputs are dict, but got {type(labels)}")
else:
raise TypeError(
f"Expected model outputs and labels to be of type torch.Tensor ' \
'(which is auto-converted to tuple), list, tuple, or dict, ' \
'but got {type(outputs)} (model outputs) and {type(labels)} (labels)"
)