Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

296 lines
10 KiB

import torch
import triton
import triton.language as tl
# Triton 2.1.0
# supports two types of cache layouts
# 1. [num_blocks, num_kv_heads, block_size, head_dim]
# 2. [num_blocks, num_kv_heads, head_dim // x, block_size, x]
@triton.jit
def _copy_to_kcache_seqlen_n_kernel(
K, # K or V
KCache, # [num_blocks, num_kv_heads, head_dim // x, block_size, x]
BLOCK_TABLES,
seq_lengths,
stride_kt,
stride_kh,
stride_kd,
stride_kcb,
stride_kch,
stride_kcsplit_x,
stride_kcs,
stride_kcx,
stride_bts,
stride_btb,
block_size,
n_tokens,
HEAD_DIM: tl.constexpr,
KCACHE_X: tl.constexpr,
):
# `n_tokens` is used to specify the number of tokens to copy for each sequence
# When n_tokens > 1, tokens from different sequences are packed into the first dimension of the grid,
# `seq_lengths` must be the lengths of sequences counting the number of tokens to copy
# E.g. if n_tokens = 5, seq_lengths = [12, 15], then the already-copied position ids are [0-6, 0-9]
# for the two sequences, respectively. And the position ids to be copied are [7-11, 9-14].
# When n_tokens = 1, consider token idx as the sequence idx, since it's only used during regular decoding stage
cur_token_idx = tl.program_id(0)
cur_seq_idx = cur_token_idx // n_tokens
# `cur_token_shift` is only valid and functional when `n_tokens` > 1
cur_token_shift = cur_token_idx - (n_tokens * (cur_seq_idx + 1))
cur_kv_head_idx = tl.program_id(1)
split_x_idx = tl.program_id(2)
past_kv_seq_len = tl.load(seq_lengths + cur_seq_idx) + cur_token_shift
last_bt_block_idx = past_kv_seq_len // block_size
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
block_id = tl.load(block_table_ptr + last_bt_block_idx * stride_btb)
offset_last_block = past_kv_seq_len % block_size
offsets_dmodel = split_x_idx * KCACHE_X + tl.arange(0, KCACHE_X)
offsets_k = cur_token_idx * stride_kt + cur_kv_head_idx * stride_kh + offsets_dmodel * stride_kd
k = tl.load(K + offsets_k)
offsets_kcache = (
block_id * stride_kcb
+ cur_kv_head_idx * stride_kch
+ split_x_idx * stride_kcsplit_x
+ offset_last_block * stride_kcs
+ tl.arange(0, KCACHE_X)
)
tl.store(KCache + offsets_kcache, k)
return
# Triton 2.1.0
@triton.jit
def _copy_to_kvcache_seqlen1_kernel(
K,
V,
KCache,
VCache,
BLOCK_TABLES,
context_lengths,
stride_kt,
stride_kh,
stride_kd,
stride_vt,
stride_vh,
stride_vd,
stride_kcb,
stride_kch,
stride_kcsplit_x,
stride_kcs,
stride_kcd,
stride_vcb,
stride_vch,
stride_vcs,
stride_vcd,
stride_bts,
stride_btb,
block_size,
HEAD_DIM: tl.constexpr,
KCACHE_X: tl.constexpr,
):
cur_seq_idx = tl.program_id(0)
cur_kv_head_idx = tl.program_id(1)
past_kv_seq_len = tl.load(context_lengths + cur_seq_idx) - 1
last_bt_block_idx = past_kv_seq_len // block_size
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
block_id = tl.load(block_table_ptr + last_bt_block_idx * stride_btb)
offsets_in_last_block = past_kv_seq_len % block_size
range_x = tl.arange(0, KCACHE_X)
offsets_dmodel_x_partition = tl.arange(0, KCACHE_X)
for split_x in tl.static_range(HEAD_DIM // KCACHE_X):
offsets_dmodel_x_partition = tl.arange(split_x * KCACHE_X, (split_x + 1) * KCACHE_X)
offsets_k = cur_seq_idx * stride_kt + cur_kv_head_idx * stride_kh + offsets_dmodel_x_partition * stride_kd
k = tl.load(K + offsets_k)
offsets_v = cur_seq_idx * stride_vt + cur_kv_head_idx * stride_vh + offsets_dmodel_x_partition * stride_vd
v = tl.load(V + offsets_v)
offsets_kcache = (
block_id * stride_kcb
+ cur_kv_head_idx * stride_kch
+ split_x * stride_kcsplit_x
+ offsets_in_last_block * stride_kcs
+ range_x
)
tl.store(KCache + offsets_kcache, k)
offsets_vcache = (
block_id * stride_vcb
+ cur_kv_head_idx * stride_vch
+ offsets_in_last_block * stride_vcs
+ offsets_dmodel_x_partition * stride_vcd
)
tl.store(VCache + offsets_vcache, v)
return
def copy_k_to_blocked_cache(
k: torch.Tensor,
k_cache: torch.Tensor,
kv_lengths: torch.Tensor,
block_tables: torch.Tensor,
n: int = 1,
use_new_kcache_layout: bool = False,
):
"""
Copy keys or values to the blocked key/value cache during decoding stage.
Args:
k (torch.Tensor): [bsz, 1, num_kv_heads, head_dim]/[bsz, num_kv_heads, head_dim] - Keys or values during decoding with seq len 1.
[bsz * n, num_kv_heads, head_dim] - Keys or values with seq len n
k_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim] - Blocked key or value cache.
new KCache Layout [num_blocks, num_kv_heads, head_dim // x, block_size, x]
kv_lengths (torch.Tensor): [bsz] - Past key/value sequence lengths plus current sequence length for each sequence.
block_tables (torch.Tensor): [bsz, max_blocks_per_sequence] - Block tables for each sequence.
n (int): Number of tokens to copy for each sequence. Default to 1.
use_new_kcache_layout (bool): Whether to use the new layout for kcache. Default to False.
"""
assert k.dtype == k_cache.dtype, "Expected consistent dtype for tensor and cache."
if k.dim() == 4:
k = k.reshape(-1, k.size(-2), k.size(-1))
k_shape = k.shape
bsz, num_kv_heads, head_dim = k_shape
# NOTE when n > 1, the shape of k is [bsz * n, num_kv_heads, head_dim]
if n > 1:
assert bsz % n == 0, "Each sequence should have the same number of tokens to be copied"
bsz = bsz // n
assert kv_lengths.shape[0] == block_tables.shape[0] == bsz, (
f"Got incompatible batch size (number of seqs):\n"
f" Past kv sequence lengths bsz {kv_lengths.shape[0]}; "
f" block tables bsz {block_tables.shape[0]}, input k batch size {bsz}"
)
k_cache_shape = k_cache.shape
# Modify if the shape of kv cahce is changed.
block_size = k_cache_shape[-2]
x = head_dim
stride_kcsplit_x, stride_kcs, stride_kcd = 0, k_cache.stride(2), k_cache.stride(3)
if use_new_kcache_layout:
# when using kcache layout [num_blocks, num_kv_heads, head_dim // x, block_size, x]
assert (
len(k_cache_shape) == 5
and k_cache_shape[1] == k_shape[1]
and k_cache_shape[2] * k_cache_shape[4] == k_shape[2]
), f"Incompatible k_cache shape {k_cache_shape} with k shape {k_shape}"
x = k_cache.size(-1)
stride_kcsplit_x, stride_kcs, stride_kcd = k_cache.stride()[2:]
num_warps = 8 if head_dim > 128 else 4
grid = (bsz * n, num_kv_heads, head_dim // x)
_copy_to_kcache_seqlen_n_kernel[grid](
k,
k_cache,
block_tables,
kv_lengths,
k.stride(0),
k.stride(1),
k.stride(2),
k_cache.stride(0),
k_cache.stride(1),
stride_kcsplit_x,
stride_kcs,
stride_kcd,
block_tables.stride(0),
block_tables.stride(1),
block_size,
n_tokens=n,
HEAD_DIM=head_dim,
KCACHE_X=x,
num_warps=num_warps,
)
def copy_kv_to_blocked_cache(
k: torch.Tensor,
v: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
kv_lengths: torch.Tensor,
block_tables: torch.Tensor,
use_new_kcache_layout: bool = False,
):
"""
Copy keys or values to the blocked key/value cache during decoding stage.
Args:
k (torch.Tensor): [bsz, 1, num_kv_heads, head_dim]/[bsz, num_kv_heads, head_dim] - Keys during decoding with seq len 1.
v (torch.Tensor): [bsz, 1, num_kv_heads, head_dim]/[bsz, num_kv_heads, head_dim] - Values during decoding with seq len 1.
k_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim] - Blocked key cache.
v_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim] - Blocked value cache.
kv_lengths (torch.Tensor): [bsz] - Past key/value sequence lengths plus current sequence length for each sequence.
block_tables (torch.Tensor): [bsz, max_blocks_per_sequence] - Block tables for each sequence.
use_new_kcache_layout (bool): Whether to use the new layout for kcache. Default to False.
"""
k_cache_shape = k_cache.shape
v_cache_shape = v_cache.shape
if use_new_kcache_layout:
assert (
len(k_cache_shape) == 5
and k_cache_shape[1] == v_cache_shape[1]
and k_cache_shape[2] * k_cache_shape[4] == v_cache_shape[3]
), f"Invalid KCache shape {k_cache_shape} and VCache shape {v_cache_shape}"
else:
assert k.size(-1) == k_cache_shape[-1], "Incompatible head dim"
assert (
k_cache_shape == v_cache_shape
), f"Incompatible KCache shape {k_cache_shape} and VCache shape {v_cache_shape}"
assert v.size(-1) == v_cache_shape[-1], "Incompatible head dim"
k = k.squeeze(1) if k.dim() == 4 else k
assert k.dim() == 3, f"Incompatible k dim {k.dim()}"
v = v.squeeze(1) if v.dim() == 4 else v
assert v.dim() == 3, f"Incompatible v dim {v.dim()}"
bsz, num_kv_heads, head_dim = k.shape
assert kv_lengths.shape[0] == block_tables.shape[0] == bsz, (
f"Got incompatible batch size (number of seqs):\n"
f" Past kv sequence lengths bsz {kv_lengths.shape[0]}; "
f" block tables bsz {block_tables.shape[0]}, input k batch size {bsz}"
)
# Modify if the shape of kv cahce is changed.
block_size = k_cache.size(-2)
x = head_dim
stride_kcsplit_x, stride_kcs, stride_kcd = 0, k_cache.stride(2), k_cache.stride(3)
if use_new_kcache_layout:
x = k_cache.size(-1)
stride_kcsplit_x, stride_kcs, stride_kcd = k_cache.stride()[2:]
num_warps = 8 if head_dim > 128 else 4
grid = (bsz, num_kv_heads)
_copy_to_kvcache_seqlen1_kernel[grid](
k,
v,
k_cache,
v_cache,
block_tables,
kv_lengths,
k.stride(0),
k.stride(1),
k.stride(2),
v.stride(0),
v.stride(1),
v.stride(2),
k_cache.stride(0),
k_cache.stride(1),
stride_kcsplit_x,
stride_kcs,
stride_kcd,
v_cache.stride(0),
v_cache.stride(1),
v_cache.stride(2),
v_cache.stride(3),
block_tables.stride(0),
block_tables.stride(1),
block_size,
HEAD_DIM=head_dim,
KCACHE_X=x,
num_warps=num_warps,
)