ColossalAI/tests/test_gemini/update/test_chunkv2.py

122 lines
4.2 KiB
Python

import torch
import colossalai
import pytest
import torch.multiprocessing as mp
import torch.distributed as dist
from functools import partial
from colossalai.testing import rerun_if_address_is_in_use, parameterize
from colossalai.utils import free_port, get_current_device
from colossalai.tensor import ProcessGroup as ColoProcessGroup
from colossalai.tensor import ColoParameter
from colossalai.gemini import TensorState
from colossalai.gemini.chunk import Chunk
def dist_sum(x):
temp = torch.tensor([x], device=get_current_device())
dist.all_reduce(temp)
return temp.item()
def add_param(param_list, param_cp_list, *args, **kwargs):
param = ColoParameter(torch.randn(*args, **kwargs))
param_list.append(param)
param_cp_list.append(param.clone())
def check_euqal(param, param_cp):
if param.device != param_cp.device:
temp = param.data.to(param_cp.device)
else:
temp = param.data
return torch.equal(temp, param_cp.data)
@parameterize('init_device', [None, torch.device('cpu')])
@parameterize('keep_gathered', [True, False])
@parameterize('pin_memory', [True, False])
def exam_chunk_basic(init_device, keep_gathered, pin_memory):
world_size = torch.distributed.get_world_size()
pg = ColoProcessGroup()
my_chunk = Chunk(chunk_size=1024,
process_group=pg,
dtype=torch.float32,
init_device=init_device,
keep_gathered=keep_gathered,
pin_memory=pin_memory)
param_list = []
param_cp_list = []
add_param(param_list, param_cp_list, 8, 8, 8, device='cuda')
add_param(param_list, param_cp_list, 4, 4)
add_param(param_list, param_cp_list, 4, 8, 2, device='cuda')
add_param(param_list, param_cp_list, 1, 1, 5)
for param in param_list:
my_chunk.append_tensor(param)
assert my_chunk.utilized_size == 597
for param, param_cp in zip(param_list, param_cp_list):
check_euqal(param, param_cp)
my_chunk.close_chunk()
if keep_gathered is False:
assert my_chunk.cpu_shard.size(0) == 1024 // world_size
assert my_chunk.device_type == 'cpu'
assert my_chunk.can_move
my_chunk.shard_move(get_current_device())
else:
assert my_chunk.chunk_total.size(0) == 1024
assert my_chunk.device_type == 'cuda'
assert not my_chunk.can_move
assert dist_sum(my_chunk.valid_end) == my_chunk.utilized_size
flag = my_chunk.has_inf_or_nan
assert not flag, "has_inf_or_nan is {}".format(flag)
my_chunk.access_chunk()
assert my_chunk.device_type == 'cuda'
for param, param_cp in zip(param_list, param_cp_list):
check_euqal(param, param_cp)
assert my_chunk.tensors_state_monitor[TensorState.HOLD] == 4
my_chunk.tensor_trans_state(param_list[0], TensorState.COMPUTE)
assert my_chunk.tensors_state_monitor[TensorState.HOLD] == 3
assert my_chunk.tensors_state_monitor[TensorState.COMPUTE] == 1
assert not my_chunk.can_release
for param in param_list:
my_chunk.tensor_trans_state(param, TensorState.COMPUTE)
my_chunk.tensor_trans_state(param, TensorState.READY_FOR_REDUCE)
assert my_chunk.tensors_state_monitor[TensorState.READY_FOR_REDUCE] == 4
assert my_chunk.can_reduce
my_chunk.reduce()
assert my_chunk.tensors_state_monitor[TensorState.HOLD] == 4
if keep_gathered is False:
assert my_chunk.cuda_shard.size(0) == 1024 // world_size
assert my_chunk.device_type == 'cuda'
assert my_chunk.can_move
else:
assert my_chunk.chunk_total.size(0) == 1024
assert my_chunk.device_type == 'cuda'
assert not my_chunk.can_move
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_chunk_basic()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2, 4])
@rerun_if_address_is_in_use()
def test_chunk_function(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_chunk_function(4)