ColossalAI/colossalai/context/process_group_initializer/initializer_data.py

54 lines
2.0 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from torch import distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_Data(ProcessGroupInitializer):
"""A ProcessGroupInitializer for data parallelism.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_data_parallel_group = self.world_size // self.data_parallel_size
def init_dist_group(self):
"""Initialize data parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
A Data parallelism's information tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.DATA
for i in range(self.num_data_parallel_group):
ranks = [i + j * self.num_data_parallel_group for j in range(self.data_parallel_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode