You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/lr_scheduler/delayed.py

180 lines
7.5 KiB

import torch
from packaging.version import Version
if Version(torch.__version__) >= Version("2.0.0"):
from torch.optim.lr_scheduler import LRScheduler as _LRScheduler
else:
from torch.optim.lr_scheduler import _LRScheduler
from colossalai.logging import get_dist_logger
class _enable_get_lr_call:
def __init__(self, o):
self.o = o
def __enter__(self):
self.o._get_lr_called_within_step = True
return self
def __exit__(self, type, value, traceback):
self.o._get_lr_called_within_step = False
class TwoStageScheduler(_LRScheduler):
def __init__(self, optimizer, after_scheduler: _LRScheduler, last_epoch=-1):
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer, last_epoch)
def state_dict(self):
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"}
if isinstance(state_dict["after_scheduler"], _LRScheduler):
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict()
del state_dict["after_scheduler"]
else:
raise NotImplementedError()
return state_dict
def load_state_dict(self, state_dict):
if "after_scheduler_dict" not in state_dict:
logger = get_dist_logger()
logger.warning(
"after_scheduler_dict is not found, skip loading after_scheduler. This may cause unexpected behavior."
)
else:
self.after_scheduler.load_state_dict(state_dict["after_scheduler_dict"])
state_dict = {
key: value
for key, value in state_dict.items()
if key not in ("after_scheduler_type", "after_scheduler_dict")
}
super().load_state_dict(state_dict)
class DelayerScheduler(TwoStageScheduler):
"""Starts with a flat lr schedule until it reaches N epochs then applies
the specific scheduler (For example: ReduceLROnPlateau)
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
delay_epochs (int): Number of epochs to keep the initial lr until starting applying the scheduler.
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, delay_epochs, after_scheduler, last_epoch=-1):
if delay_epochs < 0:
raise ValueError(f"delay_epochs must >= 0, got {delay_epochs}")
self.delay_epochs = delay_epochs
super().__init__(optimizer, after_scheduler, last_epoch)
def get_lr(self):
if self.last_epoch >= self.delay_epochs:
if not self.finished:
self.after_scheduler.base_lrs = self.base_lrs
self.finished = True
with _enable_get_lr_call(self.after_scheduler):
return self.after_scheduler.get_lr()
return self.base_lrs
def step(self, epoch=None):
if self.finished:
if epoch is None:
self.after_scheduler.step(None)
self._last_lr = self.after_scheduler.get_last_lr()
else:
self.after_scheduler.step(epoch - self.delay_epochs)
self._last_lr = self.after_scheduler.get_last_lr()
else:
return super(DelayerScheduler, self).step(epoch)
class WarmupScheduler(TwoStageScheduler):
"""Starts with a linear warmup lr schedule until it reaches N epochs then applies
the specific scheduler (For example: ReduceLROnPlateau).
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler.
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1):
self.warmup_epochs = int(warmup_epochs)
super().__init__(optimizer, after_scheduler, last_epoch)
def get_lr(self):
if self.last_epoch >= self.warmup_epochs:
if not self.finished:
self.after_scheduler.base_lrs = self.base_lrs
self.finished = True
return self.after_scheduler.get_lr()
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
def step(self, epoch=None):
if self.finished:
if epoch is None:
self.after_scheduler.step(None)
self._last_lr = self.after_scheduler.get_last_lr()
else:
self.after_scheduler.step(epoch - self.warmup_epochs)
self._last_lr = self.after_scheduler.get_last_lr()
else:
return super().step(epoch)
class WarmupDelayerScheduler(TwoStageScheduler):
"""Starts with a linear warmup lr schedule until it reaches N epochs and a flat lr schedule
until it reaches M epochs then applies the specific scheduler (For example: ReduceLROnPlateau).
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler.
delay_epochs (int): Number of epochs to keep the initial lr until starting applying the scheduler.
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, warmup_epochs, delay_epochs, after_scheduler, last_epoch=-1):
if delay_epochs < 0:
raise ValueError(f"delay_epochs must >= 0, got {delay_epochs}")
if warmup_epochs < 0:
raise ValueError(f"warmup_epochs must >= 0, got {warmup_epochs}")
self.warmup_epochs = warmup_epochs
self.delay_epochs = delay_epochs
super().__init__(optimizer, after_scheduler, last_epoch)
def get_lr(self):
if self.last_epoch >= self.warmup_epochs + self.delay_epochs:
if not self.finished:
self.after_scheduler.base_lrs = self.base_lrs
# reset lr to base_lr
for group, base_lr in zip(self.optimizer.param_groups, self.base_lrs):
group["lr"] = base_lr
self.finished = True
with _enable_get_lr_call(self.after_scheduler):
return self.after_scheduler.get_lr()
elif self.last_epoch >= self.warmup_epochs:
return self.base_lrs
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
def step(self, epoch=None):
if self.finished:
if epoch is None:
self.after_scheduler.step(None)
self._last_lr = self.after_scheduler.get_last_lr()
else:
self.after_scheduler.step(epoch - self.warmup_epochs)
self._last_lr = self.after_scheduler.get_last_lr()
else:
return super().step(epoch)