You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/autochunk/trace_flow.py

492 lines
20 KiB

from typing import Dict, List, Tuple
from torch.fx.node import Node
from .trace_indice import TraceIndice
from .utils import (
NodeMgr,
find_chunk_all_input_nodes,
find_chunk_compute_input_and_output_nodes,
find_tensor_shape_node,
flat_list,
get_node_name,
get_node_shape,
is_non_compute_node,
)
class TraceFlow(object):
def __init__(self, trace_indice: TraceIndice, node_mgr: NodeMgr) -> None:
self.trace_indice = trace_indice
self.node_mgr = node_mgr
def check_index_source(self, start_dim, start_node, start_idx, end_dim, end_node):
"""
Check 2 given index: one index should be source of the other
Args:
start_idx(int): start node chunk dim
start_node(node): start node
end_idx(int): end node chunk dim
end_node(node): end node
Returns:
bool: True if check pass
"""
# we use start_node_idx instead of real chunk index
start_node_idx = self.node_mgr.find_node_idx(start_node)
end_node_trace = self.trace_indice._find_trace_from_node(end_node)
end_node_trace_source = end_node_trace["source"][end_dim]
sorted_source = sorted(end_node_trace_source.items(), key=lambda d: d[0], reverse=True)
for node_idx, node_dim in sorted_source:
if node_idx == start_node_idx and start_dim in node_dim:
return True
# it means we meet a node outside the loop, and the node is not input node
if node_idx < start_node_idx:
return False
return False
def check_index_compute(self, start_idx, end_dim, end_node, end_idx):
"""
Check 2 given index: check they haven't been computed in the source trace.
Args:
start_idx(int): start node chunk dim
start_node(node): start node
end_idx(int): end node chunk dim
end_node(node): end node
Returns:
bool: True if check pass
"""
end_node_trace = self.trace_indice._find_trace_from_node(end_node)
end_node_compute = end_node_trace["compute"][end_dim]
if any(start_idx <= i <= end_idx for i in end_node_compute):
return False
return True
def _assign_single_node_flow(
self,
arg_node: Node,
start_idx: int,
end_idx: int,
cur_node: Node,
cur_node_dim: int,
cur_node_compute: Dict,
cur_node_source: Dict,
cur_node_fix_dim: List,
all_node_info: Dict,
next_node_list: List,
) -> bool:
"""
Given the current node and one of its arg node,
this function finds out arg node's chunk dim and fix dim
Args:
arg_node (Node): input node
start_idx (int): chunk region start
end_idx (int): chunk region end
cur_node_dim (int): current node chunk dim
cur_node_compute (Dict): current node compute dict
cur_node_source (Dict): current node source dict
cur_node_fix_dim (List): current node fix dim
all_node_info (Dict): all node chunk info in the chunk region
next_node_list (List)
Returns:
bool: True if this node can be added to the flow, vice versa.
"""
arg_idx = self.node_mgr.find_node_idx(arg_node)
# arg in chunk range or be inputs
if not (start_idx <= arg_idx < end_idx):
return True
# get fix dim
arg_fix_dim = []
if cur_node_dim is not None:
for i in cur_node_fix_dim:
fix_dim_source = cur_node_source[i]
if arg_idx in fix_dim_source:
arg_fix_dim.append(fix_dim_source[arg_idx][0])
if arg_node in all_node_info:
arg_fix_dim = list(set(all_node_info[arg_node]["fix_dim"] + arg_fix_dim))
# find arg dim
if cur_node_dim is not None:
# dim is computed
if arg_idx in cur_node_compute[cur_node_dim]:
return False
if arg_idx not in cur_node_source[cur_node_dim]:
arg_dim = None
else:
arg_dim = cur_node_source[cur_node_dim][arg_idx][0]
# chunk dim cannot be in fix dims
if arg_dim in arg_fix_dim:
return False
# chunk dim should be None if shape size is 1
if get_node_shape(arg_node)[arg_dim] == 1:
arg_dim = None
# chunk shape should equal cur node
elif get_node_shape(arg_node)[arg_dim] != 1:
if cur_node_dim is not None and get_node_shape(cur_node)[cur_node_dim] != 1:
if get_node_shape(arg_node)[arg_dim] != get_node_shape(cur_node)[cur_node_dim]:
return False
else:
arg_dim = None
# add arg rest dim as fix dim
arg_fix_dim = list(range(len(get_node_shape(arg_node))))
if arg_dim is not None:
arg_fix_dim.remove(arg_dim)
# if already in node_info, arg dim must be same
if arg_node in all_node_info:
if all_node_info[arg_node]["chunk_dim"] != arg_dim:
return False
all_node_info[arg_node]["fix_dim"] = arg_fix_dim
# else add it to list
else:
all_node_info[arg_node] = {"chunk_dim": arg_dim, "fix_dim": arg_fix_dim}
next_node_list.append(arg_node)
return True
def _get_all_node_info(self, end_dim, start_idx, end_idx):
cur_node_list = [self.node_mgr.get_node_by_idx(end_idx)] # start from the last node
all_node_info = {cur_node_list[0]: {"chunk_dim": end_dim, "fix_dim": []}}
while len(cur_node_list) > 0:
next_node_list = []
for cur_node in cur_node_list:
# get cur node info
cur_node_chunk_dim = all_node_info[cur_node]["chunk_dim"]
cur_node_fix_dim = all_node_info[cur_node]["fix_dim"]
if cur_node_chunk_dim is not None:
cur_node_compute = self.trace_indice._find_compute_trace_from_node(cur_node)
cur_node_source = self.trace_indice._find_source_trace_from_node(cur_node)
else:
cur_node_compute = cur_node_source = None
# get all valid args
arg_list = []
for arg in cur_node.all_input_nodes:
if type(arg) != type(cur_node):
continue
if is_non_compute_node(arg):
continue
if get_node_shape(arg) is None:
continue
arg_list.append(arg)
flow_flag = self._assign_single_node_flow(
arg,
start_idx,
end_idx,
cur_node,
cur_node_chunk_dim,
cur_node_compute,
cur_node_source,
cur_node_fix_dim,
all_node_info,
next_node_list,
)
if flow_flag == False:
return None
cur_node_list = next_node_list
return all_node_info
def _get_input_nodes_dim(self, inputs: List[Node], start_idx: int, end_idx: int, all_node_info: Dict) -> Tuple:
"""
Get chunk dim for every input node for their every entry, remove unchunked nodes
Args:
inputs (List[Node]): input nodes
all_node_info (Dict): describe all node's chunk dim and fix dim
start_idx (int): chunk start idx
end_idx (int): chunk end idx
Returns:
inputs (List(Node)): new inputs
inputs_dim (List): chunk dim for inputs
"""
inputs_dim = []
remove_inputs = []
for input_node in inputs:
input_dict = {}
input_node_idx = self.node_mgr.find_node_idx(input_node)
for user in input_node.users.keys():
# skip non compute
if is_non_compute_node(user):
continue
# untraced node, mostly non compute
if user not in all_node_info:
continue
user_idx = self.node_mgr.find_node_idx(user)
if start_idx <= user_idx <= end_idx:
chunk_dim = all_node_info[user]["chunk_dim"]
if chunk_dim is not None:
user_source = self.trace_indice._find_source_trace_from_node(user)[chunk_dim]
if input_node_idx in user_source:
if get_node_shape(input_node)[user_source[input_node_idx][0]] == 1:
input_dict[user_idx] = [None]
else:
input_dict[user_idx] = user_source[input_node_idx]
else:
return None, None
if len(input_dict) == 0:
remove_inputs.append(input_node)
else:
inputs_dim.append(input_dict)
# remove unchunked inputs
for i in remove_inputs:
if i in inputs:
inputs.remove(i)
return inputs, inputs_dim
def _get_prepose_nodes(self, all_node_info: Dict, start_idx: int, end_idx: int, chunk_info) -> List[Node]:
"""
get all useless nodes in chunk region and prepose them
Args:
all_node_info (Dict): describe all node's chunk dim and fix dim
start_idx (int): chunk start idx
end_idx (int): chunk end idx
Returns:
List[Node]: all nodes to be preposed
"""
# get all possible prepose nodes
maybe_prepose_nodes = []
for node, node_info in all_node_info.items():
if node_info["chunk_dim"] is None:
maybe_prepose_nodes.append(node)
for node in self.node_mgr.get_node_slice_by_idx(start_idx, end_idx):
if node not in all_node_info and node not in chunk_info["outputs"]:
maybe_prepose_nodes.append(node)
maybe_prepose_nodes.sort(
key=lambda x: self.node_mgr.find_node_idx(x),
reverse=True,
) # from last node to first node
prepose_nodes = []
# set every node as root, search its args, if all legal, turn root and args as prepose nodes
while len(maybe_prepose_nodes) > 0:
tmp_cur_prepose_nodes = [maybe_prepose_nodes[0]]
tmp_cur_related_prepose_nodes = []
prepose_flag = True
# loop cur node's all arg until out of chunk
while len(tmp_cur_prepose_nodes) > 0:
if prepose_flag == False:
break
tmp_next_prepose_nodes = []
tmp_cur_related_prepose_nodes.extend(tmp_cur_prepose_nodes)
for cur_prepose_node in tmp_cur_prepose_nodes:
if prepose_flag == False:
break
for cur_prepose_node_arg in cur_prepose_node.all_input_nodes:
if type(cur_prepose_node_arg) != type(cur_prepose_node):
continue
# out of loop
if not (start_idx <= self.node_mgr.find_node_idx(cur_prepose_node_arg) < end_idx):
continue
# compute op in loop
elif cur_prepose_node_arg in all_node_info:
if all_node_info[cur_prepose_node_arg]["chunk_dim"] is None:
tmp_next_prepose_nodes.append(cur_prepose_node_arg)
else:
prepose_flag = False
break
# non compute op
else:
tmp_next_prepose_nodes.append(cur_prepose_node_arg)
tmp_cur_prepose_nodes = tmp_next_prepose_nodes
if prepose_flag == False:
maybe_prepose_nodes.remove(maybe_prepose_nodes[0])
continue
else:
for n in tmp_cur_related_prepose_nodes:
if n not in prepose_nodes:
prepose_nodes.append(n)
if n in maybe_prepose_nodes:
maybe_prepose_nodes.remove(n)
# sort by index
prepose_nodes.sort(key=lambda x: self.node_mgr.find_node_idx(x))
chunk_info["args"]["prepose_nodes"] = prepose_nodes
def _get_non_chunk_inputs(self, chunk_info, start_idx, end_idx):
# we need to log input nodes to avoid deleting them in the loop
chunk_node_list = self.node_mgr.get_node_slice_by_idx(start_idx, end_idx + 1)
# also need to get some prepose node's arg out of non_chunk_inputs
for n in chunk_info["args"]["prepose_nodes"]:
chunk_node_list.remove(n)
non_chunk_inputs = find_chunk_all_input_nodes(chunk_node_list)
for i in non_chunk_inputs:
if i not in chunk_info["inputs"]:
chunk_info["inputs_non_chunk"].append(i)
return chunk_info
def flow_search(self, start_idx, start_dim, end_idx, end_dim):
inputs, outputs = find_chunk_compute_input_and_output_nodes(
self.node_mgr.get_node_slice_by_idx(start_idx, end_idx + 1)
)
# get every node's chunk dim and fix dim
all_node_info = self._get_all_node_info(end_dim, start_idx, end_idx)
if all_node_info is None:
return None
chunk_info = {
"region": (start_idx, end_idx),
"inputs": [],
"inputs_non_chunk": [],
"inputs_dim": [],
"outputs": [self.node_mgr.get_node_by_idx(end_idx)],
"outputs_non_tensor": {},
"outputs_dim": [end_dim],
"node_chunk_dim": all_node_info,
"args": {},
}
# find chunk info for other outputs
if len(find_tensor_shape_node(outputs)) > 1:
chunk_info = self._get_other_output_info(outputs, start_idx, start_dim, end_idx, end_dim, chunk_info)
if chunk_info is None:
return None
# get input nodes' chunk dim
inputs, inputs_dim = self._get_input_nodes_dim(inputs, start_idx, end_idx, all_node_info)
if inputs is None:
return None
chunk_info["inputs"] = inputs
chunk_info["inputs_dim"] = inputs_dim
# move useless nodes ahead of loop
self._get_prepose_nodes(all_node_info, start_idx, end_idx, chunk_info)
# find non chunk inputs
chunk_info = self._get_non_chunk_inputs(chunk_info, start_idx, end_idx)
# reassign reshape size, some size may have changed due to chunk
chunk_info = self._reassign_reshape_size(chunk_info)
return chunk_info
def _get_other_output_info(
self, outputs: List[Node], start_idx: int, start_dim: int, end_idx: int, end_dim: int, chunk_info: Dict
):
start_node = self.node_mgr.get_node_by_idx(start_idx)
# loop all outputs
for output in outputs:
output_legal = False
output_idx = self.node_mgr.find_node_idx(output)
# skip the origin output
if output_idx == end_idx:
continue
# skip non tensor
if get_node_shape(output) is None:
# log shape tensor
if len(output.meta["fwd_out"]) > 0 and isinstance(output.meta["fwd_out"][0], int):
chunk_info["outputs_non_tensor"][output] = str(output.meta["fwd_out"])
continue
# loop every dim of outputs, try to find a legal one
for output_dim in range(len(get_node_shape(output))):
if not self.check_region_start_end(start_node, start_dim, start_idx, output, output_dim, output_idx):
continue
new_all_node_info = self._get_all_node_info(output_dim, start_idx, output_idx)
if new_all_node_info is None:
continue
# check node info legal
if self._update_chunk_info(chunk_info, new_all_node_info, output, output_dim) == True:
output_legal = True
break
# not legal
if output_legal == False:
return None
return chunk_info
def _update_chunk_info(self, chunk_info: Dict, new_all_node_info: Dict, output: Node, output_dim: int) -> bool:
"""
check if there is conflict between new node info and old chunk info. If not, update old chunk info
"""
# check if conflict
overlap_flag = False
for k, v in new_all_node_info.items():
if k in chunk_info["node_chunk_dim"]:
overlap_flag = True
if chunk_info["node_chunk_dim"][k]["chunk_dim"] != v["chunk_dim"]:
return False
# if no overlap, we just consider them as prepose nodes, instead of new output
if overlap_flag == False:
return True
# update chunk info
for k, v in new_all_node_info.items():
if k in chunk_info["node_chunk_dim"]:
chunk_info["node_chunk_dim"][k]["fix_dim"] = list(
set(chunk_info["node_chunk_dim"][k]["fix_dim"] + v["fix_dim"])
)
else:
chunk_info["node_chunk_dim"][k] = v
chunk_info["outputs"].append(output)
chunk_info["outputs_dim"].append(output_dim)
return True
def _reassign_reshape_size(self, chunk_info):
"""
Some shape args in reshape may have changed due to chunk
reassign those changed shape
"""
chunk_region = chunk_info["region"]
reshape_size = {}
chunk_shape = get_node_shape(chunk_info["outputs"][0])[chunk_info["outputs_dim"][0]]
for node in self.node_mgr.get_node_slice_by_idx(chunk_region[0], chunk_region[1] + 1):
if any(i == get_node_name(node) for i in ["reshape", "view"]):
if node in chunk_info["args"]["prepose_nodes"]:
continue
if node.args[0] in chunk_info["inputs_non_chunk"]:
continue
reshape_args = flat_list(node.args[1:])
if (
len(reshape_args) == 1
and get_node_shape(reshape_args[0]) is None
and len(reshape_args[0].meta["fwd_out"]) > 1
):
continue
chunk_dim = chunk_info["node_chunk_dim"][node]["chunk_dim"]
new_shape = ""
for reshape_arg_dim, reshape_arg in enumerate(reshape_args):
if reshape_arg_dim == chunk_dim:
new_shape += "min(chunk_size, %d - chunk_idx), " % chunk_shape
else:
if isinstance(reshape_arg, int):
new_shape += "%s, " % str(reshape_arg)
else:
new_shape += "%s, " % reshape_arg.name
new_shape = new_shape[:-2]
origin_shape = str(reshape_args)[1:-1]
reshape_size[node.name] = [origin_shape, new_shape]
chunk_info["reshape_size"] = reshape_size
return chunk_info
def check_region_start_end(
self, start_node: Node, start_dim: int, start_idx: int, end_node: Node, end_dim: int, end_idx: int
) -> bool:
"""
check if region start and end is legal
"""
# dim cannot be None
if get_node_shape(end_node) is None or get_node_shape(start_node) is None:
return False
# dim size cannot be 1
if get_node_shape(end_node)[end_dim] == 1 or get_node_shape(start_node)[start_dim] == 1:
return False
# must have users
if len(end_node.users) == 0:
return False
# check index source align
if not self.check_index_source(start_dim, start_node, start_idx, end_dim, end_node):
return False
# check index compute
if not self.check_index_compute(start_idx, end_dim, end_node, end_idx):
return False
return True