mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
492 lines
20 KiB
492 lines
20 KiB
from typing import Dict, List, Tuple
|
|
|
|
from torch.fx.node import Node
|
|
|
|
from .trace_indice import TraceIndice
|
|
from .utils import (
|
|
NodeMgr,
|
|
find_chunk_all_input_nodes,
|
|
find_chunk_compute_input_and_output_nodes,
|
|
find_tensor_shape_node,
|
|
flat_list,
|
|
get_node_name,
|
|
get_node_shape,
|
|
is_non_compute_node,
|
|
)
|
|
|
|
|
|
class TraceFlow(object):
|
|
def __init__(self, trace_indice: TraceIndice, node_mgr: NodeMgr) -> None:
|
|
self.trace_indice = trace_indice
|
|
self.node_mgr = node_mgr
|
|
|
|
def check_index_source(self, start_dim, start_node, start_idx, end_dim, end_node):
|
|
"""
|
|
Check 2 given index: one index should be source of the other
|
|
Args:
|
|
start_idx(int): start node chunk dim
|
|
start_node(node): start node
|
|
end_idx(int): end node chunk dim
|
|
end_node(node): end node
|
|
|
|
Returns:
|
|
bool: True if check pass
|
|
"""
|
|
# we use start_node_idx instead of real chunk index
|
|
start_node_idx = self.node_mgr.find_node_idx(start_node)
|
|
end_node_trace = self.trace_indice._find_trace_from_node(end_node)
|
|
end_node_trace_source = end_node_trace["source"][end_dim]
|
|
sorted_source = sorted(end_node_trace_source.items(), key=lambda d: d[0], reverse=True)
|
|
for node_idx, node_dim in sorted_source:
|
|
if node_idx == start_node_idx and start_dim in node_dim:
|
|
return True
|
|
# it means we meet a node outside the loop, and the node is not input node
|
|
if node_idx < start_node_idx:
|
|
return False
|
|
return False
|
|
|
|
def check_index_compute(self, start_idx, end_dim, end_node, end_idx):
|
|
"""
|
|
Check 2 given index: check they haven't been computed in the source trace.
|
|
Args:
|
|
start_idx(int): start node chunk dim
|
|
start_node(node): start node
|
|
end_idx(int): end node chunk dim
|
|
end_node(node): end node
|
|
|
|
Returns:
|
|
bool: True if check pass
|
|
"""
|
|
end_node_trace = self.trace_indice._find_trace_from_node(end_node)
|
|
end_node_compute = end_node_trace["compute"][end_dim]
|
|
if any(start_idx <= i <= end_idx for i in end_node_compute):
|
|
return False
|
|
return True
|
|
|
|
def _assign_single_node_flow(
|
|
self,
|
|
arg_node: Node,
|
|
start_idx: int,
|
|
end_idx: int,
|
|
cur_node: Node,
|
|
cur_node_dim: int,
|
|
cur_node_compute: Dict,
|
|
cur_node_source: Dict,
|
|
cur_node_fix_dim: List,
|
|
all_node_info: Dict,
|
|
next_node_list: List,
|
|
) -> bool:
|
|
"""
|
|
Given the current node and one of its arg node,
|
|
this function finds out arg node's chunk dim and fix dim
|
|
|
|
Args:
|
|
arg_node (Node): input node
|
|
start_idx (int): chunk region start
|
|
end_idx (int): chunk region end
|
|
cur_node_dim (int): current node chunk dim
|
|
cur_node_compute (Dict): current node compute dict
|
|
cur_node_source (Dict): current node source dict
|
|
cur_node_fix_dim (List): current node fix dim
|
|
all_node_info (Dict): all node chunk info in the chunk region
|
|
next_node_list (List)
|
|
|
|
Returns:
|
|
bool: True if this node can be added to the flow, vice versa.
|
|
"""
|
|
arg_idx = self.node_mgr.find_node_idx(arg_node)
|
|
# arg in chunk range or be inputs
|
|
if not (start_idx <= arg_idx < end_idx):
|
|
return True
|
|
|
|
# get fix dim
|
|
arg_fix_dim = []
|
|
if cur_node_dim is not None:
|
|
for i in cur_node_fix_dim:
|
|
fix_dim_source = cur_node_source[i]
|
|
if arg_idx in fix_dim_source:
|
|
arg_fix_dim.append(fix_dim_source[arg_idx][0])
|
|
if arg_node in all_node_info:
|
|
arg_fix_dim = list(set(all_node_info[arg_node]["fix_dim"] + arg_fix_dim))
|
|
|
|
# find arg dim
|
|
if cur_node_dim is not None:
|
|
# dim is computed
|
|
if arg_idx in cur_node_compute[cur_node_dim]:
|
|
return False
|
|
if arg_idx not in cur_node_source[cur_node_dim]:
|
|
arg_dim = None
|
|
else:
|
|
arg_dim = cur_node_source[cur_node_dim][arg_idx][0]
|
|
# chunk dim cannot be in fix dims
|
|
if arg_dim in arg_fix_dim:
|
|
return False
|
|
# chunk dim should be None if shape size is 1
|
|
if get_node_shape(arg_node)[arg_dim] == 1:
|
|
arg_dim = None
|
|
# chunk shape should equal cur node
|
|
elif get_node_shape(arg_node)[arg_dim] != 1:
|
|
if cur_node_dim is not None and get_node_shape(cur_node)[cur_node_dim] != 1:
|
|
if get_node_shape(arg_node)[arg_dim] != get_node_shape(cur_node)[cur_node_dim]:
|
|
return False
|
|
else:
|
|
arg_dim = None
|
|
|
|
# add arg rest dim as fix dim
|
|
arg_fix_dim = list(range(len(get_node_shape(arg_node))))
|
|
if arg_dim is not None:
|
|
arg_fix_dim.remove(arg_dim)
|
|
|
|
# if already in node_info, arg dim must be same
|
|
if arg_node in all_node_info:
|
|
if all_node_info[arg_node]["chunk_dim"] != arg_dim:
|
|
return False
|
|
all_node_info[arg_node]["fix_dim"] = arg_fix_dim
|
|
# else add it to list
|
|
else:
|
|
all_node_info[arg_node] = {"chunk_dim": arg_dim, "fix_dim": arg_fix_dim}
|
|
|
|
next_node_list.append(arg_node)
|
|
return True
|
|
|
|
def _get_all_node_info(self, end_dim, start_idx, end_idx):
|
|
cur_node_list = [self.node_mgr.get_node_by_idx(end_idx)] # start from the last node
|
|
all_node_info = {cur_node_list[0]: {"chunk_dim": end_dim, "fix_dim": []}}
|
|
|
|
while len(cur_node_list) > 0:
|
|
next_node_list = []
|
|
|
|
for cur_node in cur_node_list:
|
|
# get cur node info
|
|
cur_node_chunk_dim = all_node_info[cur_node]["chunk_dim"]
|
|
cur_node_fix_dim = all_node_info[cur_node]["fix_dim"]
|
|
if cur_node_chunk_dim is not None:
|
|
cur_node_compute = self.trace_indice._find_compute_trace_from_node(cur_node)
|
|
cur_node_source = self.trace_indice._find_source_trace_from_node(cur_node)
|
|
else:
|
|
cur_node_compute = cur_node_source = None
|
|
|
|
# get all valid args
|
|
arg_list = []
|
|
for arg in cur_node.all_input_nodes:
|
|
if type(arg) != type(cur_node):
|
|
continue
|
|
if is_non_compute_node(arg):
|
|
continue
|
|
if get_node_shape(arg) is None:
|
|
continue
|
|
arg_list.append(arg)
|
|
flow_flag = self._assign_single_node_flow(
|
|
arg,
|
|
start_idx,
|
|
end_idx,
|
|
cur_node,
|
|
cur_node_chunk_dim,
|
|
cur_node_compute,
|
|
cur_node_source,
|
|
cur_node_fix_dim,
|
|
all_node_info,
|
|
next_node_list,
|
|
)
|
|
if flow_flag == False:
|
|
return None
|
|
|
|
cur_node_list = next_node_list
|
|
return all_node_info
|
|
|
|
def _get_input_nodes_dim(self, inputs: List[Node], start_idx: int, end_idx: int, all_node_info: Dict) -> Tuple:
|
|
"""
|
|
Get chunk dim for every input node for their every entry, remove unchunked nodes
|
|
|
|
Args:
|
|
inputs (List[Node]): input nodes
|
|
all_node_info (Dict): describe all node's chunk dim and fix dim
|
|
start_idx (int): chunk start idx
|
|
end_idx (int): chunk end idx
|
|
|
|
Returns:
|
|
inputs (List(Node)): new inputs
|
|
inputs_dim (List): chunk dim for inputs
|
|
"""
|
|
inputs_dim = []
|
|
remove_inputs = []
|
|
for input_node in inputs:
|
|
input_dict = {}
|
|
input_node_idx = self.node_mgr.find_node_idx(input_node)
|
|
for user in input_node.users.keys():
|
|
# skip non compute
|
|
if is_non_compute_node(user):
|
|
continue
|
|
# untraced node, mostly non compute
|
|
if user not in all_node_info:
|
|
continue
|
|
user_idx = self.node_mgr.find_node_idx(user)
|
|
if start_idx <= user_idx <= end_idx:
|
|
chunk_dim = all_node_info[user]["chunk_dim"]
|
|
if chunk_dim is not None:
|
|
user_source = self.trace_indice._find_source_trace_from_node(user)[chunk_dim]
|
|
if input_node_idx in user_source:
|
|
if get_node_shape(input_node)[user_source[input_node_idx][0]] == 1:
|
|
input_dict[user_idx] = [None]
|
|
else:
|
|
input_dict[user_idx] = user_source[input_node_idx]
|
|
else:
|
|
return None, None
|
|
if len(input_dict) == 0:
|
|
remove_inputs.append(input_node)
|
|
else:
|
|
inputs_dim.append(input_dict)
|
|
# remove unchunked inputs
|
|
for i in remove_inputs:
|
|
if i in inputs:
|
|
inputs.remove(i)
|
|
return inputs, inputs_dim
|
|
|
|
def _get_prepose_nodes(self, all_node_info: Dict, start_idx: int, end_idx: int, chunk_info) -> List[Node]:
|
|
"""
|
|
get all useless nodes in chunk region and prepose them
|
|
|
|
Args:
|
|
all_node_info (Dict): describe all node's chunk dim and fix dim
|
|
start_idx (int): chunk start idx
|
|
end_idx (int): chunk end idx
|
|
|
|
Returns:
|
|
List[Node]: all nodes to be preposed
|
|
"""
|
|
# get all possible prepose nodes
|
|
maybe_prepose_nodes = []
|
|
for node, node_info in all_node_info.items():
|
|
if node_info["chunk_dim"] is None:
|
|
maybe_prepose_nodes.append(node)
|
|
for node in self.node_mgr.get_node_slice_by_idx(start_idx, end_idx):
|
|
if node not in all_node_info and node not in chunk_info["outputs"]:
|
|
maybe_prepose_nodes.append(node)
|
|
maybe_prepose_nodes.sort(
|
|
key=lambda x: self.node_mgr.find_node_idx(x),
|
|
reverse=True,
|
|
) # from last node to first node
|
|
prepose_nodes = []
|
|
# set every node as root, search its args, if all legal, turn root and args as prepose nodes
|
|
while len(maybe_prepose_nodes) > 0:
|
|
tmp_cur_prepose_nodes = [maybe_prepose_nodes[0]]
|
|
tmp_cur_related_prepose_nodes = []
|
|
prepose_flag = True
|
|
|
|
# loop cur node's all arg until out of chunk
|
|
while len(tmp_cur_prepose_nodes) > 0:
|
|
if prepose_flag == False:
|
|
break
|
|
tmp_next_prepose_nodes = []
|
|
tmp_cur_related_prepose_nodes.extend(tmp_cur_prepose_nodes)
|
|
for cur_prepose_node in tmp_cur_prepose_nodes:
|
|
if prepose_flag == False:
|
|
break
|
|
for cur_prepose_node_arg in cur_prepose_node.all_input_nodes:
|
|
if type(cur_prepose_node_arg) != type(cur_prepose_node):
|
|
continue
|
|
# out of loop
|
|
if not (start_idx <= self.node_mgr.find_node_idx(cur_prepose_node_arg) < end_idx):
|
|
continue
|
|
# compute op in loop
|
|
elif cur_prepose_node_arg in all_node_info:
|
|
if all_node_info[cur_prepose_node_arg]["chunk_dim"] is None:
|
|
tmp_next_prepose_nodes.append(cur_prepose_node_arg)
|
|
else:
|
|
prepose_flag = False
|
|
break
|
|
# non compute op
|
|
else:
|
|
tmp_next_prepose_nodes.append(cur_prepose_node_arg)
|
|
tmp_cur_prepose_nodes = tmp_next_prepose_nodes
|
|
|
|
if prepose_flag == False:
|
|
maybe_prepose_nodes.remove(maybe_prepose_nodes[0])
|
|
continue
|
|
else:
|
|
for n in tmp_cur_related_prepose_nodes:
|
|
if n not in prepose_nodes:
|
|
prepose_nodes.append(n)
|
|
if n in maybe_prepose_nodes:
|
|
maybe_prepose_nodes.remove(n)
|
|
# sort by index
|
|
prepose_nodes.sort(key=lambda x: self.node_mgr.find_node_idx(x))
|
|
chunk_info["args"]["prepose_nodes"] = prepose_nodes
|
|
|
|
def _get_non_chunk_inputs(self, chunk_info, start_idx, end_idx):
|
|
# we need to log input nodes to avoid deleting them in the loop
|
|
chunk_node_list = self.node_mgr.get_node_slice_by_idx(start_idx, end_idx + 1)
|
|
# also need to get some prepose node's arg out of non_chunk_inputs
|
|
for n in chunk_info["args"]["prepose_nodes"]:
|
|
chunk_node_list.remove(n)
|
|
non_chunk_inputs = find_chunk_all_input_nodes(chunk_node_list)
|
|
for i in non_chunk_inputs:
|
|
if i not in chunk_info["inputs"]:
|
|
chunk_info["inputs_non_chunk"].append(i)
|
|
return chunk_info
|
|
|
|
def flow_search(self, start_idx, start_dim, end_idx, end_dim):
|
|
inputs, outputs = find_chunk_compute_input_and_output_nodes(
|
|
self.node_mgr.get_node_slice_by_idx(start_idx, end_idx + 1)
|
|
)
|
|
|
|
# get every node's chunk dim and fix dim
|
|
all_node_info = self._get_all_node_info(end_dim, start_idx, end_idx)
|
|
if all_node_info is None:
|
|
return None
|
|
|
|
chunk_info = {
|
|
"region": (start_idx, end_idx),
|
|
"inputs": [],
|
|
"inputs_non_chunk": [],
|
|
"inputs_dim": [],
|
|
"outputs": [self.node_mgr.get_node_by_idx(end_idx)],
|
|
"outputs_non_tensor": {},
|
|
"outputs_dim": [end_dim],
|
|
"node_chunk_dim": all_node_info,
|
|
"args": {},
|
|
}
|
|
|
|
# find chunk info for other outputs
|
|
if len(find_tensor_shape_node(outputs)) > 1:
|
|
chunk_info = self._get_other_output_info(outputs, start_idx, start_dim, end_idx, end_dim, chunk_info)
|
|
if chunk_info is None:
|
|
return None
|
|
|
|
# get input nodes' chunk dim
|
|
inputs, inputs_dim = self._get_input_nodes_dim(inputs, start_idx, end_idx, all_node_info)
|
|
if inputs is None:
|
|
return None
|
|
chunk_info["inputs"] = inputs
|
|
chunk_info["inputs_dim"] = inputs_dim
|
|
|
|
# move useless nodes ahead of loop
|
|
self._get_prepose_nodes(all_node_info, start_idx, end_idx, chunk_info)
|
|
|
|
# find non chunk inputs
|
|
chunk_info = self._get_non_chunk_inputs(chunk_info, start_idx, end_idx)
|
|
|
|
# reassign reshape size, some size may have changed due to chunk
|
|
chunk_info = self._reassign_reshape_size(chunk_info)
|
|
|
|
return chunk_info
|
|
|
|
def _get_other_output_info(
|
|
self, outputs: List[Node], start_idx: int, start_dim: int, end_idx: int, end_dim: int, chunk_info: Dict
|
|
):
|
|
start_node = self.node_mgr.get_node_by_idx(start_idx)
|
|
# loop all outputs
|
|
for output in outputs:
|
|
output_legal = False
|
|
output_idx = self.node_mgr.find_node_idx(output)
|
|
# skip the origin output
|
|
if output_idx == end_idx:
|
|
continue
|
|
# skip non tensor
|
|
if get_node_shape(output) is None:
|
|
# log shape tensor
|
|
if len(output.meta["fwd_out"]) > 0 and isinstance(output.meta["fwd_out"][0], int):
|
|
chunk_info["outputs_non_tensor"][output] = str(output.meta["fwd_out"])
|
|
continue
|
|
# loop every dim of outputs, try to find a legal one
|
|
for output_dim in range(len(get_node_shape(output))):
|
|
if not self.check_region_start_end(start_node, start_dim, start_idx, output, output_dim, output_idx):
|
|
continue
|
|
new_all_node_info = self._get_all_node_info(output_dim, start_idx, output_idx)
|
|
if new_all_node_info is None:
|
|
continue
|
|
# check node info legal
|
|
if self._update_chunk_info(chunk_info, new_all_node_info, output, output_dim) == True:
|
|
output_legal = True
|
|
break
|
|
# not legal
|
|
if output_legal == False:
|
|
return None
|
|
return chunk_info
|
|
|
|
def _update_chunk_info(self, chunk_info: Dict, new_all_node_info: Dict, output: Node, output_dim: int) -> bool:
|
|
"""
|
|
check if there is conflict between new node info and old chunk info. If not, update old chunk info
|
|
"""
|
|
# check if conflict
|
|
overlap_flag = False
|
|
for k, v in new_all_node_info.items():
|
|
if k in chunk_info["node_chunk_dim"]:
|
|
overlap_flag = True
|
|
if chunk_info["node_chunk_dim"][k]["chunk_dim"] != v["chunk_dim"]:
|
|
return False
|
|
# if no overlap, we just consider them as prepose nodes, instead of new output
|
|
if overlap_flag == False:
|
|
return True
|
|
# update chunk info
|
|
for k, v in new_all_node_info.items():
|
|
if k in chunk_info["node_chunk_dim"]:
|
|
chunk_info["node_chunk_dim"][k]["fix_dim"] = list(
|
|
set(chunk_info["node_chunk_dim"][k]["fix_dim"] + v["fix_dim"])
|
|
)
|
|
else:
|
|
chunk_info["node_chunk_dim"][k] = v
|
|
chunk_info["outputs"].append(output)
|
|
chunk_info["outputs_dim"].append(output_dim)
|
|
return True
|
|
|
|
def _reassign_reshape_size(self, chunk_info):
|
|
"""
|
|
Some shape args in reshape may have changed due to chunk
|
|
reassign those changed shape
|
|
"""
|
|
chunk_region = chunk_info["region"]
|
|
reshape_size = {}
|
|
chunk_shape = get_node_shape(chunk_info["outputs"][0])[chunk_info["outputs_dim"][0]]
|
|
for node in self.node_mgr.get_node_slice_by_idx(chunk_region[0], chunk_region[1] + 1):
|
|
if any(i == get_node_name(node) for i in ["reshape", "view"]):
|
|
if node in chunk_info["args"]["prepose_nodes"]:
|
|
continue
|
|
if node.args[0] in chunk_info["inputs_non_chunk"]:
|
|
continue
|
|
reshape_args = flat_list(node.args[1:])
|
|
if (
|
|
len(reshape_args) == 1
|
|
and get_node_shape(reshape_args[0]) is None
|
|
and len(reshape_args[0].meta["fwd_out"]) > 1
|
|
):
|
|
continue
|
|
chunk_dim = chunk_info["node_chunk_dim"][node]["chunk_dim"]
|
|
new_shape = ""
|
|
for reshape_arg_dim, reshape_arg in enumerate(reshape_args):
|
|
if reshape_arg_dim == chunk_dim:
|
|
new_shape += "min(chunk_size, %d - chunk_idx), " % chunk_shape
|
|
else:
|
|
if isinstance(reshape_arg, int):
|
|
new_shape += "%s, " % str(reshape_arg)
|
|
else:
|
|
new_shape += "%s, " % reshape_arg.name
|
|
new_shape = new_shape[:-2]
|
|
origin_shape = str(reshape_args)[1:-1]
|
|
reshape_size[node.name] = [origin_shape, new_shape]
|
|
chunk_info["reshape_size"] = reshape_size
|
|
return chunk_info
|
|
|
|
def check_region_start_end(
|
|
self, start_node: Node, start_dim: int, start_idx: int, end_node: Node, end_dim: int, end_idx: int
|
|
) -> bool:
|
|
"""
|
|
check if region start and end is legal
|
|
"""
|
|
# dim cannot be None
|
|
if get_node_shape(end_node) is None or get_node_shape(start_node) is None:
|
|
return False
|
|
# dim size cannot be 1
|
|
if get_node_shape(end_node)[end_dim] == 1 or get_node_shape(start_node)[start_dim] == 1:
|
|
return False
|
|
# must have users
|
|
if len(end_node.users) == 0:
|
|
return False
|
|
# check index source align
|
|
if not self.check_index_source(start_dim, start_node, start_idx, end_dim, end_node):
|
|
return False
|
|
# check index compute
|
|
if not self.check_index_compute(start_idx, end_dim, end_node, end_idx):
|
|
return False
|
|
return True
|