mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
555 lines
18 KiB
555 lines
18 KiB
# adopted from https://github.com/facebookresearch/fvcore/blob/main/fvcore/nn/jit_handles.py
|
|
# ideas from https://pastebin.com/AkvAyJBw
|
|
# and https://dev-discuss.pytorch.org/t/the-ideal-pytorch-flop-counter-with-torch-dispatch/505
|
|
|
|
import operator
|
|
from collections import defaultdict
|
|
from contextlib import contextmanager
|
|
from enum import Enum, auto
|
|
from functools import partial, reduce
|
|
from numbers import Number
|
|
from typing import Any, Callable, List, Union
|
|
|
|
import torch
|
|
from packaging import version
|
|
from torch.utils._pytree import tree_map
|
|
|
|
from .meta_tensor import MetaTensor
|
|
|
|
aten = torch.ops.aten
|
|
|
|
|
|
class Phase(Enum):
|
|
FWD = auto()
|
|
BWD = auto()
|
|
|
|
|
|
def normalize_tuple(x):
|
|
if not isinstance(x, tuple):
|
|
return (x,)
|
|
return x
|
|
|
|
|
|
def _format_flops(flop):
|
|
K = 1e3
|
|
M = 1e6
|
|
B = 1e9
|
|
T = 1e12
|
|
if flop < K:
|
|
return f"{flop:.2f}"
|
|
elif flop < M:
|
|
return f"{flop / K:.2f}K"
|
|
elif flop < B:
|
|
return f"{flop / M:.2f}M"
|
|
elif flop < T:
|
|
return f"{flop / B:.2f}B"
|
|
else:
|
|
return f"{flop / T:.2f}T"
|
|
|
|
|
|
def flop_count(module: Union[torch.nn.Module, Callable] = None, *args, verbose: bool = False, **kwargs) -> Number:
|
|
"""
|
|
Count the number of floating point operations in a model.
|
|
Ideas from https://pastebin.com/AkvAyJBw.
|
|
Args:
|
|
module (torch.nn.Module): A PyTorch model.
|
|
*args: Input arguments to the model.
|
|
verbose (bool): If True, print the number of flops for each module.
|
|
**kwargs: Input keyword arguments to the model.
|
|
Returns:
|
|
Number: The total number of floating point operations (FWD + BWD).
|
|
"""
|
|
maybe_inplace = (
|
|
getattr(module, "inplace", False)
|
|
or kwargs.get("inplace", False)
|
|
or getattr(module, "__name__", None) in ("add_", "mul_", "div_", "sub_")
|
|
)
|
|
|
|
class DummyModule(torch.nn.Module):
|
|
def __init__(self, func):
|
|
super().__init__()
|
|
self.func = func
|
|
self.__name__ = func.__name__
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return self.func(*args, **kwargs)
|
|
|
|
total_flop_count = {Phase.FWD: 0, Phase.BWD: 0}
|
|
flop_counts = defaultdict(lambda: defaultdict(int))
|
|
parents = ["Global"]
|
|
module = module if isinstance(module, torch.nn.Module) else DummyModule(module)
|
|
|
|
class FlopTensor(MetaTensor):
|
|
_tensor: torch.Tensor
|
|
|
|
def __repr__(self):
|
|
name = "FlopParameter" if getattr(self, "_is_param", False) else "FlopTensor"
|
|
if self.grad_fn:
|
|
return f"{name}(..., size={tuple(self.shape)}, device='{self.device}', dtype={self.dtype}, grad_fn={self.grad_fn})"
|
|
return f"{name}(..., size={tuple(self.shape)}, device='{self.device}', dtype={self.dtype})"
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
# no_dispatch is only needed if you use enable_python_mode.
|
|
# It prevents infinite recursion.
|
|
rs = super().__torch_dispatch__(func, types, args, kwargs)
|
|
|
|
outs = normalize_tuple(rs)
|
|
|
|
if func in flop_mapping:
|
|
nonlocal flop_counts, total_flop_count
|
|
flop_count = flop_mapping[func](args, outs)
|
|
for par in parents:
|
|
flop_counts[par][func.__name__] += flop_count
|
|
total_flop_count[cur_phase] += flop_count
|
|
|
|
def wrap(x):
|
|
if isinstance(x, MetaTensor):
|
|
x = FlopTensor(x)
|
|
return x
|
|
|
|
rs = tree_map(wrap, rs)
|
|
|
|
return rs
|
|
|
|
def is_autogradable(x):
|
|
return isinstance(x, torch.Tensor) and x.is_floating_point()
|
|
|
|
def create_backwards_push(name):
|
|
class PushState(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, *args):
|
|
args = tree_map(lambda x: x.clone() if isinstance(x, torch.Tensor) else x, args)
|
|
if len(args) == 1:
|
|
return args[0]
|
|
return args
|
|
|
|
@staticmethod
|
|
def backward(ctx, *grad_outs):
|
|
nonlocal parents
|
|
parents.append(name)
|
|
return grad_outs
|
|
|
|
return PushState.apply
|
|
|
|
def create_backwards_pop(name):
|
|
class PopState(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, *args):
|
|
args = tree_map(lambda x: x.clone() if isinstance(x, torch.Tensor) else x, args)
|
|
if len(args) == 1:
|
|
return args[0]
|
|
return args
|
|
|
|
@staticmethod
|
|
def backward(ctx, *grad_outs):
|
|
nonlocal parents
|
|
assert parents[-1] == name
|
|
parents.pop()
|
|
return grad_outs
|
|
|
|
return PopState.apply
|
|
|
|
def enter_module(name):
|
|
def f(module, inputs):
|
|
nonlocal parents
|
|
parents.append(name)
|
|
inputs = normalize_tuple(inputs)
|
|
out = create_backwards_pop(name)(*inputs)
|
|
return out
|
|
|
|
return f
|
|
|
|
def exit_module(name):
|
|
def f(module, inputs, outputs):
|
|
nonlocal parents
|
|
assert parents[-1] == name
|
|
parents.pop()
|
|
outputs = normalize_tuple(outputs)
|
|
return create_backwards_push(name)(*outputs)
|
|
|
|
return f
|
|
|
|
@contextmanager
|
|
def instrument_module(mod):
|
|
registered = []
|
|
for name, module in dict(mod.named_children()).items():
|
|
registered.append(module.register_forward_pre_hook(enter_module(name)))
|
|
registered.append(module.register_forward_hook(exit_module(name)))
|
|
yield
|
|
for handle in registered:
|
|
handle.remove()
|
|
|
|
def display_flops():
|
|
for mod in flop_counts.keys():
|
|
print(f"Module: ", mod)
|
|
for k, v in flop_counts[mod].items():
|
|
print("\t", k, _format_flops(v))
|
|
print()
|
|
|
|
def detach_variables(r):
|
|
if isinstance(r, torch.Tensor):
|
|
requires_grad = r.requires_grad
|
|
r = r.detach()
|
|
r.requires_grad = requires_grad
|
|
return r
|
|
|
|
def wrap(r):
|
|
if isinstance(r, torch.Tensor):
|
|
data_ptr_fn = getattr(r, "_tensor", r).data_ptr
|
|
r = FlopTensor(detach_variables(r))
|
|
if maybe_inplace:
|
|
r = r + 0
|
|
r._tensor.data_ptr = data_ptr_fn
|
|
return r
|
|
|
|
with instrument_module(module):
|
|
cur_phase = Phase.FWD
|
|
rst = module(*tree_map(wrap, args), **tree_map(wrap, kwargs))
|
|
rst = tuple(r for r in normalize_tuple(rst) if is_autogradable(r) and r.requires_grad)
|
|
cur_phase = Phase.BWD
|
|
|
|
if rst:
|
|
grad = [torch.zeros_like(t) for t in rst]
|
|
torch.autograd.backward(
|
|
rst,
|
|
grad,
|
|
)
|
|
|
|
if verbose:
|
|
display_flops()
|
|
|
|
return total_flop_count[Phase.FWD], total_flop_count[Phase.BWD]
|
|
|
|
|
|
def matmul_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
|
|
"""
|
|
Count flops for matmul.
|
|
"""
|
|
# Inputs should be a list of length 2.
|
|
# Inputs contains the shapes of two matrices.
|
|
input_shapes = [v.shape for v in inputs]
|
|
assert len(input_shapes) == 2, input_shapes
|
|
|
|
# There are three cases: 1) gemm, 2) gemv, 3) dot
|
|
if all(len(shape) == 2 for shape in input_shapes):
|
|
# gemm
|
|
assert input_shapes[0][-1] == input_shapes[1][-2], input_shapes
|
|
elif all(len(shape) == 1 for shape in input_shapes):
|
|
# dot
|
|
assert input_shapes[0][0] == input_shapes[1][0], input_shapes
|
|
|
|
# expand shape
|
|
input_shapes[0] = torch.Size([1, input_shapes[0][0]])
|
|
input_shapes[1] = torch.Size([input_shapes[1][0], 1])
|
|
else:
|
|
# gemv
|
|
if len(input_shapes[0]) == 1:
|
|
assert input_shapes[0][0] == input_shapes[1][-2], input_shapes
|
|
input_shapes.reverse()
|
|
else:
|
|
assert input_shapes[1][0] == input_shapes[0][-1], input_shapes
|
|
|
|
# expand the shape of the vector to [batch size, 1]
|
|
input_shapes[-1] = torch.Size([input_shapes[-1][-1], 1])
|
|
flops = reduce(operator.mul, input_shapes[0]) * input_shapes[-1][-1]
|
|
return flops
|
|
|
|
|
|
def addmm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
|
|
"""
|
|
Count flops for fully connected layers.
|
|
"""
|
|
# Count flop for nn.Linear
|
|
# inputs is a list of length 3.
|
|
input_shapes = [v.shape for v in inputs[1:3]]
|
|
# input_shapes[0]: [batch size, input feature dimension]
|
|
# input_shapes[1]: [input feature dimension, output feature dimension]
|
|
assert len(input_shapes[0]) == 2, input_shapes[0]
|
|
assert len(input_shapes[1]) == 2, input_shapes[1]
|
|
batch_size, input_dim = input_shapes[0]
|
|
output_dim = input_shapes[1][1]
|
|
flops = batch_size * input_dim * output_dim
|
|
return flops
|
|
|
|
|
|
def linear_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
|
|
"""
|
|
Count flops for the aten::linear operator.
|
|
"""
|
|
# Inputs is a list of length 3; unlike aten::addmm, it is the first
|
|
# two elements that are relevant.
|
|
input_shapes = [v.shape for v in inputs[0:2]]
|
|
# input_shapes[0]: [dim0, dim1, ..., input_feature_dim]
|
|
# input_shapes[1]: [output_feature_dim, input_feature_dim]
|
|
assert input_shapes[0][-1] == input_shapes[1][-1]
|
|
flops = reduce(operator.mul, input_shapes[0]) * input_shapes[1][0]
|
|
return flops
|
|
|
|
|
|
def bmm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
|
|
"""
|
|
Count flops for the bmm operation.
|
|
"""
|
|
# Inputs should be a list of length 2.
|
|
# Inputs contains the shapes of two tensor.
|
|
assert len(inputs) == 2, len(inputs)
|
|
input_shapes = [v.shape for v in inputs]
|
|
n, c, t = input_shapes[0]
|
|
d = input_shapes[-1][-1]
|
|
flops = n * c * t * d
|
|
return flops
|
|
|
|
|
|
def conv_flop_count(
|
|
x_shape: List[int],
|
|
w_shape: List[int],
|
|
out_shape: List[int],
|
|
transposed: bool = False,
|
|
) -> Number:
|
|
"""
|
|
Count flops for convolution. Note only multiplication is
|
|
counted. Computation for addition and bias is ignored.
|
|
Flops for a transposed convolution are calculated as
|
|
flops = (x_shape[2:] * prod(w_shape) * batch_size).
|
|
Args:
|
|
x_shape (list(int)): The input shape before convolution.
|
|
w_shape (list(int)): The filter shape.
|
|
out_shape (list(int)): The output shape after convolution.
|
|
transposed (bool): is the convolution transposed
|
|
Returns:
|
|
int: the number of flops
|
|
"""
|
|
batch_size = x_shape[0]
|
|
conv_shape = (x_shape if transposed else out_shape)[2:]
|
|
flops = batch_size * reduce(operator.mul, w_shape) * reduce(operator.mul, conv_shape)
|
|
return flops
|
|
|
|
|
|
def conv_flop_jit(inputs: List[Any], outputs: List[Any]):
|
|
"""
|
|
Count flops for convolution.
|
|
"""
|
|
x, w = inputs[:2]
|
|
x_shape, w_shape, out_shape = (x.shape, w.shape, outputs[0].shape)
|
|
transposed = inputs[6]
|
|
|
|
return conv_flop_count(x_shape, w_shape, out_shape, transposed=transposed)
|
|
|
|
|
|
def transpose_shape(shape):
|
|
return [shape[1], shape[0]] + list(shape[2:])
|
|
|
|
|
|
def conv_backward_flop_jit(inputs: List[Any], outputs: List[Any]):
|
|
grad_out_shape, x_shape, w_shape = [i.shape for i in inputs[:3]]
|
|
output_mask = inputs[-1]
|
|
fwd_transposed = inputs[7]
|
|
flop_count = 0
|
|
|
|
if output_mask[0]:
|
|
grad_input_shape = outputs[0].shape
|
|
flop_count += conv_flop_count(grad_out_shape, w_shape, grad_input_shape, not fwd_transposed)
|
|
if output_mask[1]:
|
|
grad_weight_shape = outputs[1].shape
|
|
flop_count += conv_flop_count(transpose_shape(x_shape), grad_out_shape, grad_weight_shape, fwd_transposed)
|
|
|
|
return flop_count
|
|
|
|
|
|
def norm_flop_counter(affine_arg_index: int, input_arg_index: int) -> Callable:
|
|
"""
|
|
Args:
|
|
affine_arg_index: index of the affine argument in inputs
|
|
"""
|
|
|
|
def norm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
|
|
"""
|
|
Count flops for norm layers.
|
|
"""
|
|
# Inputs[0] contains the shape of the input.
|
|
input_shape = inputs[input_arg_index].shape
|
|
|
|
has_affine = (
|
|
inputs[affine_arg_index].shape is not None
|
|
if hasattr(inputs[affine_arg_index], "shape")
|
|
else inputs[affine_arg_index]
|
|
)
|
|
assert 2 <= len(input_shape) <= 5, input_shape
|
|
# 5 is just a rough estimate
|
|
flop = reduce(operator.mul, input_shape) * (5 if has_affine else 4)
|
|
return flop
|
|
|
|
return norm_flop_jit
|
|
|
|
|
|
def batchnorm_flop_jit(inputs: List[Any], outputs: List[Any], training: bool = None) -> Number:
|
|
if training is None:
|
|
training = inputs[-3]
|
|
assert isinstance(training, bool), "Signature of aten::batch_norm has changed!"
|
|
if training:
|
|
return norm_flop_counter(1, 0)(inputs, outputs) # pyre-ignore
|
|
has_affine = inputs[1].shape is not None
|
|
input_shape = reduce(operator.mul, inputs[0].shape)
|
|
return input_shape * (2 if has_affine else 1)
|
|
|
|
|
|
def ewise_flop_counter(input_scale: float = 1, output_scale: float = 0) -> Callable:
|
|
"""
|
|
Count flops by
|
|
input_tensor.numel() * input_scale + output_tensor.numel() * output_scale
|
|
Args:
|
|
input_scale: scale of the input tensor (first argument)
|
|
output_scale: scale of the output tensor (first element in outputs)
|
|
"""
|
|
|
|
def ewise_flop(inputs: List[Any], outputs: List[Any]) -> Number:
|
|
ret = 0
|
|
if input_scale != 0:
|
|
shape = inputs[0].shape
|
|
ret += input_scale * reduce(operator.mul, shape) if shape else 0
|
|
if output_scale != 0:
|
|
shape = outputs[0].shape
|
|
ret += output_scale * reduce(operator.mul, shape) if shape else 0
|
|
return ret
|
|
|
|
return ewise_flop
|
|
|
|
|
|
def zero_flop_jit(*args):
|
|
"""
|
|
Count flops for zero flop layers.
|
|
"""
|
|
return 0
|
|
|
|
|
|
if version.parse(torch.__version__) >= version.parse("1.12.0"):
|
|
flop_mapping = {
|
|
# gemm
|
|
aten.mm.default: matmul_flop_jit,
|
|
aten.matmul.default: matmul_flop_jit,
|
|
aten.addmm.default: addmm_flop_jit,
|
|
aten.bmm.default: bmm_flop_jit,
|
|
# convolution
|
|
aten.convolution.default: conv_flop_jit,
|
|
aten._convolution.default: conv_flop_jit,
|
|
aten.convolution_backward.default: conv_backward_flop_jit,
|
|
# normalization
|
|
aten.native_batch_norm.default: batchnorm_flop_jit,
|
|
aten.native_batch_norm_backward.default: batchnorm_flop_jit,
|
|
aten.cudnn_batch_norm.default: batchnorm_flop_jit,
|
|
aten.cudnn_batch_norm_backward.default: partial(batchnorm_flop_jit, training=True),
|
|
aten.native_layer_norm.default: norm_flop_counter(2, 0),
|
|
aten.native_layer_norm_backward.default: norm_flop_counter(2, 0),
|
|
# pooling
|
|
aten.avg_pool1d.default: ewise_flop_counter(1, 0),
|
|
aten.avg_pool2d.default: ewise_flop_counter(1, 0),
|
|
aten.avg_pool2d_backward.default: ewise_flop_counter(0, 1),
|
|
aten.avg_pool3d.default: ewise_flop_counter(1, 0),
|
|
aten.avg_pool3d_backward.default: ewise_flop_counter(0, 1),
|
|
aten.max_pool1d.default: ewise_flop_counter(1, 0),
|
|
aten.max_pool2d.default: ewise_flop_counter(1, 0),
|
|
aten.max_pool3d.default: ewise_flop_counter(1, 0),
|
|
aten.max_pool1d_with_indices.default: ewise_flop_counter(1, 0),
|
|
aten.max_pool2d_with_indices.default: ewise_flop_counter(1, 0),
|
|
aten.max_pool2d_with_indices_backward.default: ewise_flop_counter(0, 1),
|
|
aten.max_pool3d_with_indices.default: ewise_flop_counter(1, 0),
|
|
aten.max_pool3d_with_indices_backward.default: ewise_flop_counter(0, 1),
|
|
aten._adaptive_avg_pool2d.default: ewise_flop_counter(1, 0),
|
|
aten._adaptive_avg_pool2d_backward.default: ewise_flop_counter(0, 1),
|
|
aten._adaptive_avg_pool3d.default: ewise_flop_counter(1, 0),
|
|
aten._adaptive_avg_pool3d_backward.default: ewise_flop_counter(0, 1),
|
|
aten.embedding_dense_backward.default: ewise_flop_counter(0, 1),
|
|
aten.embedding.default: ewise_flop_counter(1, 0),
|
|
}
|
|
|
|
ewise_flop_aten = [
|
|
# basic op
|
|
aten.add.Tensor,
|
|
aten.add_.Tensor,
|
|
aten.div.Tensor,
|
|
aten.div_.Tensor,
|
|
aten.div.Scalar,
|
|
aten.div_.Scalar,
|
|
aten.mul.Tensor,
|
|
aten.mul.Scalar,
|
|
aten.mul_.Tensor,
|
|
aten.neg.default,
|
|
aten.pow.Tensor_Scalar,
|
|
aten.rsub.Scalar,
|
|
aten.sum.default,
|
|
aten.sum.dim_IntList,
|
|
aten.mean.dim,
|
|
# activation op
|
|
aten.hardswish.default,
|
|
aten.hardswish_.default,
|
|
aten.hardswish_backward.default,
|
|
aten.hardtanh.default,
|
|
aten.hardtanh_.default,
|
|
aten.hardtanh_backward.default,
|
|
aten.hardsigmoid_backward.default,
|
|
aten.hardsigmoid.default,
|
|
aten.gelu.default,
|
|
aten.gelu_backward.default,
|
|
aten.silu.default,
|
|
aten.silu_.default,
|
|
aten.silu_backward.default,
|
|
aten.sigmoid.default,
|
|
aten.sigmoid_backward.default,
|
|
aten._softmax.default,
|
|
aten._softmax_backward_data.default,
|
|
aten.relu_.default,
|
|
aten.relu.default,
|
|
aten.tanh.default,
|
|
aten.tanh_backward.default,
|
|
aten.threshold_backward.default,
|
|
# dropout
|
|
aten.native_dropout.default,
|
|
aten.native_dropout_backward.default,
|
|
# distribution
|
|
aten.bernoulli_.float,
|
|
# where
|
|
aten.where.self,
|
|
]
|
|
for op in ewise_flop_aten:
|
|
flop_mapping[op] = ewise_flop_counter(1, 0)
|
|
|
|
# fix-me: this will be removed in future
|
|
zero_flop_aten = [
|
|
aten.as_strided.default,
|
|
aten.as_strided_.default,
|
|
aten.cat.default,
|
|
aten.clone.default,
|
|
aten.copy_.default,
|
|
aten.detach.default,
|
|
aten.expand.default,
|
|
aten.empty_like.default,
|
|
aten.new_empty.default,
|
|
aten.new_empty_strided.default,
|
|
aten.ones_like.default,
|
|
aten._reshape_alias.default,
|
|
aten.select.int,
|
|
aten.select_backward.default,
|
|
aten.squeeze.dim,
|
|
aten.slice.Tensor,
|
|
aten.slice_backward.default,
|
|
aten.split.Tensor,
|
|
aten.permute.default,
|
|
aten.t.default,
|
|
aten.transpose.int,
|
|
aten._to_copy.default,
|
|
aten.unsqueeze.default,
|
|
aten.unbind.int,
|
|
aten._unsafe_view.default,
|
|
aten.view.default,
|
|
aten.zero_.default,
|
|
aten.zeros_like.default,
|
|
]
|
|
|
|
for op in zero_flop_aten:
|
|
flop_mapping[op] = zero_flop_jit
|
|
else:
|
|
flop_mapping = {}
|
|
elementwise_flop_aten = {}
|
|
zero_flop_aten = {}
|