Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

109 lines
3.8 KiB

import os
import time
from abc import abstractmethod
from pathlib import Path
from typing import List
from .base_extension import _Extension
from .cpp_extension import _CppExtension
from .utils import check_pytorch_version, check_system_pytorch_cuda_match, set_cuda_arch_list
__all__ = ["_CudaExtension"]
# Some constants for installation checks
MIN_PYTORCH_VERSION_MAJOR = 1
MIN_PYTORCH_VERSION_MINOR = 10
class _CudaExtension(_CppExtension):
@abstractmethod
def nvcc_flags(self) -> List[str]:
"""
This function should return a list of nvcc compilation flags for extensions.
"""
def is_hardware_available(self) -> bool:
# cuda extension can only be built if cuda is available
try:
import torch
cuda_available = torch.cuda.is_available()
except:
cuda_available = False
return cuda_available
def assert_hardware_compatible(self) -> None:
from torch.utils.cpp_extension import CUDA_HOME
if not CUDA_HOME:
raise AssertionError(
"[extension] CUDA_HOME is not found. You need to export CUDA_HOME environment variable or install CUDA Toolkit first in order to build/load CUDA extensions"
)
check_system_pytorch_cuda_match(CUDA_HOME)
check_pytorch_version(MIN_PYTORCH_VERSION_MAJOR, MIN_PYTORCH_VERSION_MINOR)
def get_cuda_home_include(self):
"""
return include path inside the cuda home.
"""
from torch.utils.cpp_extension import CUDA_HOME
if CUDA_HOME is None:
raise RuntimeError("CUDA_HOME is None, please set CUDA_HOME to compile C++/CUDA kernels in ColossalAI.")
cuda_include = os.path.join(CUDA_HOME, "include")
return cuda_include
def build_jit(self) -> None:
from torch.utils.cpp_extension import CUDA_HOME, load
set_cuda_arch_list(CUDA_HOME)
# get build dir
build_directory = _Extension.get_jit_extension_folder_path()
build_directory = Path(build_directory)
build_directory.mkdir(parents=True, exist_ok=True)
# check if the kernel has been built
compiled_before = False
kernel_file_path = build_directory.joinpath(f"{self.name}.o")
if kernel_file_path.exists():
compiled_before = True
# load the kernel
if compiled_before:
print(f"[extension] Loading the JIT-built {self.name} kernel during runtime now")
else:
print(f"[extension] Compiling the JIT {self.name} kernel during runtime now")
build_start = time.time()
op_kernel = load(
name=self.name,
sources=self.strip_empty_entries(self.sources_files()),
extra_include_paths=self.strip_empty_entries(self.include_dirs()),
extra_cflags=self.cxx_flags(),
extra_cuda_cflags=self.nvcc_flags(),
extra_ldflags=[],
build_directory=str(build_directory),
)
build_duration = time.time() - build_start
if compiled_before:
print(f"[extension] Time taken to load {self.name} op: {build_duration} seconds")
else:
print(f"[extension] Time taken to compile {self.name} op: {build_duration} seconds")
return op_kernel
def build_aot(self) -> "CUDAExtension":
from torch.utils.cpp_extension import CUDA_HOME, CUDAExtension
set_cuda_arch_list(CUDA_HOME)
return CUDAExtension(
name=self.prebuilt_import_path,
sources=self.strip_empty_entries(self.sources_files()),
include_dirs=self.strip_empty_entries(self.include_dirs()),
extra_compile_args={
"cxx": self.strip_empty_entries(self.cxx_flags()),
"nvcc": self.strip_empty_entries(self.nvcc_flags()),
},
)