mirror of https://github.com/hpcaitech/ColossalAI
188 lines
6.5 KiB
Python
188 lines
6.5 KiB
Python
import copy
|
|
from contextlib import nullcontext
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import distributed as dist
|
|
from torch.optim import Adam
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import HybridParallelPlugin
|
|
from colossalai.lazy.lazy_init import LazyInitContext
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.tensor.d_tensor.api import (
|
|
clear_layout_converter,
|
|
is_customized_distributed_tensor,
|
|
is_distributed_tensor,
|
|
)
|
|
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
|
from tests.kit.model_zoo import model_zoo
|
|
from tests.test_shardformer.test_model._utils import build_model, check_grad, check_state_dict, run_forward
|
|
|
|
|
|
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
|
|
|
use_lazy_init = False
|
|
if 'use_lazy_init' in test_config:
|
|
use_lazy_init = test_config.pop('use_lazy_init')
|
|
|
|
if use_lazy_init:
|
|
ctx = LazyInitContext()
|
|
else:
|
|
ctx = nullcontext()
|
|
|
|
# prepare booster
|
|
plugin = HybridParallelPlugin(**test_config)
|
|
booster = Booster(plugin=plugin)
|
|
stage_manager = plugin.stage_manager
|
|
|
|
# prepare models and optimizers
|
|
with ctx:
|
|
org_model = model_fn().cuda()
|
|
sharded_model = copy.deepcopy(org_model)
|
|
|
|
if use_lazy_init:
|
|
org_model = ctx.materialize(org_model)
|
|
|
|
org_optimizer = Adam(org_model.parameters(), lr=1e-3)
|
|
sharded_optimizer = Adam(sharded_model.parameters(), lr=1e-3)
|
|
criterion = loss_fn
|
|
|
|
sharded_model, sharded_optimizer, criterion, _, _ = booster.boost(sharded_model, sharded_optimizer, criterion)
|
|
|
|
def _criterion(outputs, inputs):
|
|
outputs = output_transform_fn(outputs)
|
|
loss = criterion(outputs)
|
|
return loss
|
|
|
|
# do forward and backward
|
|
data = data_gen_fn()
|
|
sharded_model.train()
|
|
if stage_manager:
|
|
data = {
|
|
k: v.to('cuda').repeat(4, 1) if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v
|
|
for k, v in data.items()
|
|
}
|
|
data_iter = iter([data])
|
|
sharded_output = booster.execute_pipeline(data_iter,
|
|
sharded_model,
|
|
_criterion,
|
|
sharded_optimizer,
|
|
return_loss=True,
|
|
return_outputs=True)
|
|
sharded_loss = sharded_output['loss']
|
|
else:
|
|
data = {k: v.cuda() for k, v in data.items()}
|
|
sharded_output = sharded_model(**data)
|
|
sharded_loss = criterion(sharded_output)
|
|
sharded_loss.backward()
|
|
|
|
org_model.train()
|
|
org_output = org_model(**data)
|
|
org_loss = criterion(org_output)
|
|
org_loss.backward()
|
|
|
|
if stage_manager is None or stage_manager.is_last_stage():
|
|
|
|
# check last hidden state
|
|
if org_model.__class__.__name__ == 'GPT2Model':
|
|
org_hidden_state = org_output.last_hidden_state
|
|
|
|
if stage_manager is None:
|
|
sharded_hidden_state = sharded_output.last_hidden_state
|
|
|
|
if stage_manager and stage_manager.is_last_stage():
|
|
sharded_hidden_state = torch.cat([output.last_hidden_state for output in sharded_output['outputs']],
|
|
dim=0)
|
|
|
|
assert torch.allclose(org_hidden_state, sharded_hidden_state, atol=1e-5, rtol=1e-3), \
|
|
f"shard model's output hidden state is not equal to origin model's last hidden state\n{org_hidden_state}\n{sharded_hidden_state}"
|
|
|
|
# check loss
|
|
assert torch.allclose(org_loss, sharded_loss, atol=1e-5, rtol=1e-3), \
|
|
f"shard model loss is not equal to origin model loss\n{org_loss}\n{sharded_loss}"
|
|
|
|
# unwrap model
|
|
if org_model.__class__.__name__ == 'GPT2Model':
|
|
gpt2 = org_model
|
|
sharded_gpt2 = sharded_model.unwrap()
|
|
else:
|
|
gpt2 = org_model.transformer
|
|
sharded_gpt2 = sharded_model.unwrap().transformer
|
|
|
|
# check grad
|
|
col_layer_for_check = ['h[0].mlp.c_fc']
|
|
row_layer_for_check = ['h[0].mlp.c_proj']
|
|
check_grad(gpt2, sharded_gpt2, col_layer_for_check, atol=1e-6, rtol=1e-3, dim=1, verbose=False)
|
|
check_grad(gpt2, sharded_gpt2, row_layer_for_check, atol=1e-6, rtol=1e-3, dim=0, verbose=False)
|
|
|
|
# check weights after optimizer.step()
|
|
org_optimizer.step()
|
|
sharded_optimizer.step()
|
|
if stage_manager is None or stage_manager.is_first_stage():
|
|
|
|
org_weight = org_model.h[0].mlp.c_fc.weight
|
|
shard_weight = sharded_model.h[0].mlp.c_fc.weight
|
|
|
|
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
|
shard_weight_list = [torch.zeros([*shard_weight.shape]).to('cuda') for _ in range(plugin.tp_size)]
|
|
dist.all_gather(shard_weight_list, shard_weight, plugin.tp_group)
|
|
shard_weight = torch.cat(shard_weight_list, dim=1)
|
|
|
|
assert torch.allclose(org_weight, shard_weight, atol=5e-3, rtol=1e-3), \
|
|
f"shard model weight is not equal to origin model weight\n{org_weight}\n{shard_weight}"
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@parameterize('test_config', [{
|
|
'tp_size': 1,
|
|
'pp_size': 2,
|
|
'num_microbatches': 4,
|
|
'use_lazy_init': True
|
|
}, {
|
|
'tp_size': 2,
|
|
'pp_size': 2,
|
|
'num_microbatches': 4,
|
|
'enable_fused_normalization': False,
|
|
'use_lazy_init': False
|
|
}, {
|
|
'tp_size': 4,
|
|
'pp_size': 1,
|
|
'enable_fused_normalization': True,
|
|
'use_lazy_init': False
|
|
}])
|
|
@clear_cache_before_run()
|
|
def run_gpt2_test(test_config):
|
|
|
|
# TODO: add plugin_config for TP+DP after supporting & debugging it
|
|
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
|
|
|
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
|
|
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
|
|
|
clear_layout_converter()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def check_gpt2(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
run_gpt2_test()
|
|
|
|
|
|
@pytest.mark.skip('Have some bug caused by merge')
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
@clear_cache_before_run()
|
|
def test_gpt2():
|
|
spawn(check_gpt2, 4)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_gpt2()
|