ColossalAI/applications/Chat/tests/test_experience.py

121 lines
4.7 KiB
Python

import os
from copy import deepcopy
import pytest
import torch
import torch.distributed as dist
from coati.experience_buffer import NaiveExperienceBuffer
from coati.experience_maker import NaiveExperienceMaker
from coati.models.base import RewardModel
from coati.models.gpt import GPTActor, GPTCritic
from coati.trainer.strategies import DDPStrategy, GeminiStrategy
from coati.trainer.strategies.colossalai import LowLevelZeroStrategy
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from colossalai.testing import rerun_if_address_is_in_use, spawn
GPT_CONFIG = GPT2Config(n_embd=128, n_layer=4, n_head=4)
def get_data(batch_size: int, seq_len: int = 10) -> dict:
input_ids = torch.randint(0, 50257, (batch_size, seq_len), device='cuda')
attention_mask = torch.ones_like(input_ids)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def gather_and_equal(tensor: torch.Tensor) -> bool:
world_size = dist.get_world_size()
outputs = [torch.empty_like(tensor) for _ in range(world_size)]
dist.all_gather(outputs, tensor.contiguous())
for t in outputs[1:]:
if not torch.equal(outputs[0], t):
return False
return True
def make_and_consume_experience(strategy):
EXPERIENCE_BATCH_SIZE = 4
SAMPLE_BATCH_SIZE = 2
if strategy == 'ddp':
strategy = DDPStrategy()
elif strategy == 'colossalai-zero2':
strategy = LowLevelZeroStrategy()
elif strategy == 'colossalai-gemini':
strategy = GeminiStrategy(placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{strategy}"')
actor = GPTActor(config=GPT_CONFIG).cuda()
critic = GPTCritic(config=GPT_CONFIG).cuda()
initial_model = deepcopy(actor)
reward_model = RewardModel(deepcopy(critic.model)).cuda()
experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model)
data_buffer = NaiveExperienceBuffer(SAMPLE_BATCH_SIZE, cpu_offload=False)
# experience of all ranks should be the same
for _ in range(2):
data = get_data(EXPERIENCE_BATCH_SIZE)
assert gather_and_equal(data['input_ids'])
assert gather_and_equal(data['attention_mask'])
experience = experience_maker.make_experience(**data,
do_sample=True,
max_length=16,
eos_token_id=50256,
pad_token_id=50256)
assert gather_and_equal(experience.sequences)
assert gather_and_equal(experience.action_log_probs)
assert gather_and_equal(experience.values)
assert gather_and_equal(experience.reward)
assert gather_and_equal(experience.advantages)
assert gather_and_equal(experience.action_mask)
assert gather_and_equal(experience.attention_mask)
data_buffer.append(experience)
# data buffer's data should be the same
buffer_size = torch.tensor([len(data_buffer)], device='cuda')
assert gather_and_equal(buffer_size)
for item in data_buffer.items:
assert gather_and_equal(item.sequences)
assert gather_and_equal(item.action_log_probs)
assert gather_and_equal(item.values)
assert gather_and_equal(item.reward)
assert gather_and_equal(item.advantages)
assert gather_and_equal(item.action_mask)
assert gather_and_equal(item.attention_mask)
# dataloader of each rank should have the same size and different batch
dataloader = strategy.setup_dataloader(data_buffer)
dataloader_size = torch.tensor([len(dataloader)], device='cuda')
assert gather_and_equal(dataloader_size)
for experience in dataloader:
assert not gather_and_equal(experience.sequences)
assert not gather_and_equal(experience.action_log_probs)
assert not gather_and_equal(experience.values)
assert not gather_and_equal(experience.reward)
assert not gather_and_equal(experience.advantages)
# action mask and attention mask may be same
def run_dist(rank, world_size, port, strategy):
os.environ['RANK'] = str(rank)
os.environ['LOCAL_RANK'] = str(rank)
os.environ['WORLD_SIZE'] = str(world_size)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
make_and_consume_experience(strategy)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('strategy', ['ddp', 'colossalai-zero2', 'colossalai-gemini'])
@rerun_if_address_is_in_use()
def test_experience(world_size, strategy):
spawn(run_dist, world_size, strategy=strategy)
if __name__ == '__main__':
test_experience(2, 'colossalai')