ColossalAI/applications/Chat/examples/community/peft/train_peft_sft.py

185 lines
8.6 KiB
Python

import argparse
import os
import loralib as lora
import torch
import torch.distributed as dist
from coati.dataset import DataCollatorForSupervisedDataset, SFTDataset, SupervisedDataset
from coati.models.base import RewardModel
from coati.models.bloom import BLOOMLM
from coati.models.gpt import GPTLM
from coati.models.llama import LlamaLM
from coati.models.opt import OPTLM
from coati.trainer import SFTTrainer
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
from datasets import load_dataset
from easy_dataset import EasyDataset
from peft import LoraConfig, PeftModel, TaskType, get_peft_model
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoModelForCausalLM, AutoTokenizer, BloomTokenizerFast
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import HybridAdam
from colossalai.tensor import ColoParameter
def train(args):
# configure strategy
if args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = GeminiStrategy(placement_policy='cuda')
elif args.strategy == 'colossalai_zero2':
strategy = LowLevelZeroStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
with strategy.model_init_context():
print('Warning: currently only bloom is tested, gpt2,llama and opt are not tested')
model = AutoModelForCausalLM.from_pretrained(args.pretrain).to(torch.cuda.current_device())
# if the args.save_path exists and args.save_path+'/adapter_config.json' exists, we'll load the adapter_config.json
if os.path.exists(args.save_path) and os.path.exists(args.save_path + '/adapter_config.json') \
and os.path.exists(args.save_path + '/adapter_model.bin'):
print("loading from saved peft model ", args.save_path)
model = PeftModel.from_pretrained(model, args.save_path)
else:
# we'll use peft lora library to do the lora
lora_rank = args.lora_rank if args.lora_rank > 0 else 32
# config lora with rank of lora_rank
lora_config = LoraConfig(task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=lora_rank,
lora_alpha=32,
lora_dropout=0.1)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m")
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'llama':
tokenizer = AutoTokenizer.from_pretrained(
args.pretrain,
padding_side="right",
use_fast=False,
)
tokenizer.eos_token = '<\s>'
tokenizer.pad_token = tokenizer.unk_token
else:
raise ValueError(f'Unsupported model "{args.model}"')
if args.model == 'llama' and args.strategy == 'colossalai_gemini':
# this is a hack to deal with the resized embedding
# to make sure all parameters are ColoParameter for Colossal-AI Gemini Compatibility
for name, param in model.named_parameters():
if not isinstance(param, ColoParameter):
sub_module_name = '.'.join(name.split('.')[:-1])
weight_name = name.split('.')[-1]
sub_module = model.get_submodule(sub_module_name)
setattr(sub_module, weight_name, ColoParameter(param))
# configure optimizer
if args.strategy.startswith('colossalai'):
optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0)
else:
optim = Adam(model.parameters(), lr=args.lr)
logger = get_dist_logger()
logger.set_level('WARNING')
# configure dataset
law_dataset = EasyDataset(args.dataset, tokenizer=tokenizer, is_group_texts=not args.is_short_text)
train_dataset = law_dataset
print(train_dataset)
eval_dataset = None
if args.eval_dataset is not None:
eval_dataset = EasyDataset(args.eval_dataset, tokenizer=tokenizer, is_group_texts=not args.is_short_text)
data_collator = default_collate
if dist.is_initialized() and dist.get_world_size() > 1:
train_sampler = DistributedSampler(train_dataset,
shuffle=True,
seed=42,
drop_last=True,
rank=dist.get_rank(),
num_replicas=dist.get_world_size())
if eval_dataset is not None:
eval_sampler = DistributedSampler(eval_dataset,
shuffle=False,
seed=42,
drop_last=False,
rank=dist.get_rank(),
num_replicas=dist.get_world_size())
else:
train_sampler = None
eval_sampler = None
train_dataloader = DataLoader(train_dataset,
shuffle=(train_sampler is None),
sampler=train_sampler,
batch_size=args.batch_size,
collate_fn=data_collator,
pin_memory=True)
if eval_dataset is not None:
eval_dataloader = DataLoader(eval_dataset,
shuffle=(eval_sampler is None),
sampler=eval_sampler,
batch_size=args.batch_size,
collate_fn=data_collator,
pin_memory=True)
else:
eval_dataloader = None
trainer = SFTTrainer(model=model,
strategy=strategy,
optim=optim,
train_dataloader=train_dataloader,
eval_dataloader=eval_dataloader,
batch_size=args.batch_size,
max_epochs=args.max_epochs,
accumulation_steps=args.accumulation_steps)
trainer.fit(logger=logger, log_interval=args.log_interval)
# save model checkpoint after fitting on only rank0
trainer.save_model(path=args.save_path, only_rank0=True, tokenizer=tokenizer)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(trainer.optimizer,
'rm_optim_checkpoint_%d.pt' % (torch.cuda.current_device()),
only_rank0=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--strategy',
choices=['ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='ddp')
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom')
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--dataset', type=str, default=None)
parser.add_argument('--eval_dataset', type=str, default=None)
parser.add_argument('--save_path', type=str, default='output')
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
parser.add_argument('--max_epochs', type=int, default=3)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument('--log_interval', type=int, default=100, help="how many steps to log")
parser.add_argument('--lr', type=float, default=5e-6)
parser.add_argument('--accumulation_steps', type=int, default=8)
parser.add_argument('--enable_peft_lora', action='store_true', default=False)
parser.add_argument("--is_short_text", action='store_true', default=False)
args = parser.parse_args()
train(args)