ColossalAI/applications/Chat/examples/community/peft/train_peft_prompts.py

223 lines
10 KiB
Python

import argparse
import pandas as pd
import torch
import torch.distributed as dist
from coati.dataset import DataCollatorForSupervisedDataset, PromptDataset, SupervisedDataset
from coati.models.bloom import BLOOMRM, BLOOMCritic
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
from coati.models.llama import LlamaActor, LlamaCritic, LlamaRM
from coati.models.opt import OPTRM, OPTActor, OPTCritic
from coati.trainer import PPOTrainer
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
from easy_dataset import EasyPromptsDataset, EasySupervisedDataset
from easy_models import BLOOMActor
from peft import PeftModel
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer
from colossalai.nn.optimizer import HybridAdam
def main(args):
# configure strategy
if args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = GeminiStrategy(placement_policy='cpu', initial_scale=2**5)
elif args.strategy == 'colossalai_zero2':
strategy = LowLevelZeroStrategy(stage=2, placement_policy='cpu')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
if args.rm_path is not None:
state_dict = torch.load(args.rm_path, map_location='cpu')
# configure model
if args.model == 'bloom':
# initial_model = BLOOMActor(pretrained=args.pretrain)
print('Using peft lora to load Bloom model as initial_model')
initial_model = BLOOMActor(pretrained=args.pretrain, lora_path=args.sft_lora_path)
print('Using peft lora to load Bloom model as initial_model (Done)')
else:
raise ValueError(f'Unsupported actor model "{args.model}"')
if args.rm_model == None:
rm_model_name = args.model
else:
rm_model_name = args.rm_model
if rm_model_name == 'gpt2':
reward_model = GPTRM(pretrained=args.rm_pretrain)
elif rm_model_name == 'bloom':
print("load bloom reward model ", args.rm_pretrain)
reward_model = BLOOMRM(pretrained=args.rm_pretrain)
elif rm_model_name == 'opt':
reward_model = OPTRM(pretrained=args.rm_pretrain)
elif rm_model_name == 'llama':
reward_model = LlamaRM(pretrained=args.rm_pretrain)
else:
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
if args.rm_path is not None:
print('Loading reward model from', args.rm_path)
reward_model.load_state_dict(state_dict)
if args.strategy != 'colossalai_gemini':
initial_model.to(torch.float16).to(torch.cuda.current_device())
reward_model.to(torch.float16).to(torch.cuda.current_device())
with strategy.model_init_context():
if args.model == 'bloom':
# actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
print('Using peft lora to load Bloom model as Actor')
actor = BLOOMActor(pretrained=args.pretrain, lora_path=args.sft_lora_path)
print('Using peft lora to load Bloom model as Actor (Done)')
else:
raise ValueError(f'Unsupported actor model "{args.model}"')
if rm_model_name == 'gpt2':
critic = GPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
elif rm_model_name == 'bloom':
print("load bloom critic ", args.rm_pretrain, " lora_rank ", args.lora_rank, " use_action_mask ", True)
critic = BLOOMCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
print("load bloom critic (Done) ")
elif rm_model_name == 'opt':
critic = OPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
elif rm_model_name == 'llama':
critic = LlamaCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
else:
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
if args.rm_path is not None:
print('Loading reward model from', args.rm_path)
critic.load_state_dict(state_dict)
del state_dict
if args.strategy != 'colossalai_gemini':
critic.to(torch.float16).to(torch.cuda.current_device())
actor.to(torch.float16).to(torch.cuda.current_device())
# configure optimizer
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=1e-7)
critic_optim = HybridAdam(critic.parameters(), lr=1e-7)
else:
actor_optim = Adam(actor.parameters(), lr=1e-7)
critic_optim = Adam(critic.parameters(), lr=1e-7)
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained(args.rm_pretrain)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained(args.rm_pretrain)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained(args.rm_pretrain)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'llama':
tokenizer = LlamaTokenizer.from_pretrained(args.pretrain)
tokenizer.eos_token = '<\s>'
tokenizer.pad_token = tokenizer.unk_token
else:
raise ValueError(f'Unsupported model "{args.model}"')
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
prompt_dataset = EasyPromptsDataset(args.prompt_path, tokenizer)
if dist.is_initialized() and dist.get_world_size() > 1:
prompt_sampler = DistributedSampler(prompt_dataset, shuffle=True, seed=42, drop_last=True)
else:
prompt_sampler = None
prompt_dataloader = DataLoader(prompt_dataset,
shuffle=(prompt_sampler is None),
sampler=prompt_sampler,
batch_size=args.train_batch_size)
pretrain_dataset = EasySupervisedDataset(args.pretrain_dataset, tokenizer)
if dist.is_initialized() and dist.get_world_size() > 1:
pretrain_sampler = DistributedSampler(pretrain_dataset, shuffle=True, seed=42, drop_last=True)
else:
pretrain_sampler = None
pretrain_dataloader = DataLoader(pretrain_dataset,
shuffle=(pretrain_sampler is None),
sampler=pretrain_sampler,
batch_size=args.ptx_batch_size,
collate_fn=data_collator)
def tokenize_fn(texts):
# MUST padding to max length to ensure inputs of all ranks have the same length
# Different length may lead to hang when using gemini, as different generation steps
batch = tokenizer(texts, return_tensors='pt', max_length=96, padding='max_length', truncation=True)
return {k: v.to(torch.cuda.current_device()) for k, v in batch.items()}
(actor, actor_optim), (critic, critic_optim) = strategy.prepare((actor, actor_optim), (critic, critic_optim))
# configure trainer
trainer = PPOTrainer(
strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
kl_coef=args.kl_coef,
ptx_coef=args.ptx_coef,
train_batch_size=args.train_batch_size,
experience_batch_size=args.experience_batch_size,
tokenizer=tokenize_fn,
max_length=512,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
trainer.fit(prompt_dataloader=prompt_dataloader,
pretrain_dataloader=pretrain_dataloader,
num_episodes=args.num_episodes,
num_update_steps=args.num_update_steps,
num_collect_steps=args.num_collect_steps)
# save model checkpoint after fitting
trainer.save_model(args.save_path, only_rank0=True, tokenizer=tokenizer)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(actor_optim,
'actor_optim_checkpoint_prompts_%d.pt' % (torch.cuda.current_device()),
only_rank0=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--prompt_path', type=str, default=None, help='path to the prompt dataset')
parser.add_argument('--pretrain_dataset', type=str, default=None, help='path to the pretrained dataset')
parser.add_argument('--strategy',
choices=['ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='ddp',
help='strategy to use')
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt', 'llama'])
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--sft_lora_path', type=str, default=None)
parser.add_argument('--rm_model', default=None, choices=['gpt2', 'bloom', 'opt', 'llama'])
parser.add_argument('--rm_path', type=str, default=None)
parser.add_argument('--rm_pretrain', type=str, default=None)
parser.add_argument('--save_path', type=str, default='actor_checkpoint_prompts')
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
parser.add_argument('--num_episodes', type=int, default=10)
parser.add_argument('--num_collect_steps', type=int, default=10)
parser.add_argument('--num_update_steps', type=int, default=5)
parser.add_argument('--train_batch_size', type=int, default=2)
parser.add_argument('--ptx_batch_size', type=int, default=1)
parser.add_argument('--experience_batch_size', type=int, default=8)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument('--kl_coef', type=float, default=0.1)
parser.add_argument('--ptx_coef', type=float, default=0.9)
args = parser.parse_args()
main(args)