ColossalAI/applications/Chat/evaluate/evaluator.py

220 lines
11 KiB
Python

import os
from typing import Any, Dict, List
import gpt_evaluate
import metrics
import pandas as pd
import unieval
from utils import analyze_automatic_results, get_data_per_category, save_automatic_results
class Evaluator(object):
"""
A class named Evaluator includes GPT-3.5/GPT-4 evaluation
and automatic evaluation
"""
def __init__(self, params: Dict[str, Any], battle_prompt: Dict[str, Any], gpt_evaluation_prompt: Dict[str, Any],
gpt_model: str, language: str, path_for_UniEval: Dict[str, str], gpt_with_reference: bool) -> None:
self.params = params
self.battle_prompt = battle_prompt
self.gpt_evaluation_prompt = gpt_evaluation_prompt
self.gpt_model = gpt_model
self.language = language
self.path_for_UniEval = path_for_UniEval
self.gpt_with_reference = gpt_with_reference
self.automatic_metric_stats = dict()
self.unieval_metric_stats = dict()
self.gpt_evaluation_results = dict()
self.battle_results = []
def battle(self, answers1: List[Dict], answers2: List[Dict]) -> None:
"""
Comparison between two models using GPT-4 as the reviewer.
"""
self.battle_results = gpt_evaluate.battle(answers1, answers2, self.battle_prompt)
def evaluate(self, answers: List[Dict], targets: List[Dict]) -> None:
"""
A comprehensive evaluation of the answers from the model.
The function evaluates the model's performance from different perspectives
using GPT-3.5, GPT-4, and off-the-shelf evaluation metrics.
The metrics will be decided by the config file.
"""
def switch(metric, language):
if metric == "BLEU":
return metrics.bleu_score(preds=predicts_list, targets=targets_list, language=language)
elif metric == "ROUGE":
return metrics.rouge_score(preds=predicts_list, targets=targets_list, language=language)
elif metric == "Distinct":
return metrics.distinct_score(preds=predicts_list, language=language)
elif metric == "BERTScore":
return metrics.bert_score(preds=predicts_list, targets=targets_list, language=language)
elif metric == "Precision":
return metrics.precision(preds=predicts_list, targets=targets_list, language=language)
elif metric == "Recall":
return metrics.recall(preds=predicts_list, targets=targets_list, language=language)
elif metric == "F1 score":
return metrics.F1_score(preds=predicts_list, targets=targets_list, language=language)
elif metric == "CHRF":
return metrics.chrf_score(preds=predicts_list, targets=targets_list, language=language)
else:
raise ValueError(f"Unexpected metric")
answers_per_category = get_data_per_category(answers, list(self.params.keys()))
targets_per_category = get_data_per_category(targets, list(self.params.keys()))
# automatic evaluation
for category in self.params:
if len(answers_per_category[category]) == 0:
print(f"Category {category} specified in your config doesn't have corresponding answers!")
continue
if self.params[category].get("Metrics", None) is None:
continue
category_metrics = self.params[category]["Metrics"]
self.automatic_metric_stats[category] = {}
targets_list = [
target["target"] if target["target"] else target["output"] for target in targets_per_category[category]
]
predicts_list = [answer["output"] for answer in answers_per_category[category]]
for metric in category_metrics:
self.automatic_metric_stats[category].update(switch(metric=metric, language=self.language))
# UniEval evaluation
# self.unieval_metric_stats's key is "task" instead of "category".
# Iterating "task" first will avoid repeated loading models because one task corresponds to one UniEval model.
# If key is "category", different models will be loaded for multiple times across categories because the user may require different task(models) to evaluate one category.
for category in self.params:
if len(answers_per_category[category]) == 0:
print(f"Category {category} specified in your config doesn't have corresponding answers!")
continue
if self.params[category].get("UniEval", None) is None:
continue
if self.params[category]["UniEval"] and self.language == "cn":
raise Exception(
"UniEval doesn't support Chinese! Please remove UniEval config in your Chinese config file.")
category_metrics = self.params[category]["UniEval"]
for task, metric in [tuple(category_metric.split("-")) for category_metric in category_metrics]:
if self.unieval_metric_stats.get(task, None) is None:
self.unieval_metric_stats[task] = {category: {metric: 0}}
elif self.unieval_metric_stats[task].get(category, None) is None:
self.unieval_metric_stats[task][category] = {metric: 0}
else:
self.unieval_metric_stats[task][category][metric] = 0
for task in self.unieval_metric_stats:
if self.path_for_UniEval is None:
raise Exception(f"Please specify the path for UniEval model in the config file!")
if self.path_for_UniEval.get(task, None) is None:
raise Exception(f"Please specify the model path for task {task} in the config file!")
print(f"Load UniEval model for task {task}.")
uni_evaluator = unieval.get_evaluator(task, model_name_or_path=self.path_for_UniEval[task])
for category in self.unieval_metric_stats[task]:
targets_list = [
target["target"] if target["target"] else target["output"]
for target in targets_per_category[category]
]
predicts_list = [answer["output"] for answer in answers_per_category[category]]
sources_list = [answer["instruction"] + answer["input"] for answer in answers_per_category[category]]
data = unieval.convert_data_to_unieval_format(predicts_list, sources_list, targets_list)
scores = uni_evaluator.evaluate(data,
category,
dims=list(self.unieval_metric_stats[task][category].keys()),
overall=False)
avg_scores = unieval.calculate_average_score(scores)
self.unieval_metric_stats[task][category].update(avg_scores)
# gpt evaluation
for category in self.params:
if len(answers_per_category[category]) == 0:
print(f"Category {category} specified in your config doesn't have corresponding answers!")
continue
if self.params[category].get("GPT", None) is None:
continue
category_metrics = self.params[category]["GPT"]
prompt = self.gpt_evaluation_prompt.get(category, None)
if prompt is None:
print(f"No prompt for category {category}! Use prompt for category general now.")
prompt = self.gpt_evaluation_prompt["general"]
self.gpt_evaluation_results[category] = gpt_evaluate.evaluate(
answers_per_category[category],
prompt,
category_metrics,
category,
self.gpt_model,
self.language,
references=targets_per_category[category] if self.gpt_with_reference else None)
def save(self, path: str, model_name_list: List[str]) -> None:
"""
Save evaluation results of GPT-3.5, GPT-4, and off-the-shelf evaluation metrics.
"""
if len(model_name_list) == 2:
save_path = os.path.join(path, "gpt_evaluate", "battle_results")
gpt_evaluate.save_battle_results(self.battle_results, model_name_list[0], model_name_list[1], save_path)
else:
if self.automatic_metric_stats:
# Save evaluation results for automatic metrics
automatic_base_save_path = os.path.join(path, "automatic_results")
automatic_results_save_path = os.path.join(automatic_base_save_path, "evaluation_results")
save_automatic_results(model_name_list[0], self.automatic_metric_stats, automatic_results_save_path)
# Save charts and csv.
automatic_analyses_save_path = os.path.join(automatic_base_save_path, "evaluation_analyses")
analyze_automatic_results(automatic_results_save_path, automatic_analyses_save_path)
if self.unieval_metric_stats:
# Save evaluation results for UniEval metrics
unieval_base_save_path = os.path.join(path, "unieval_results")
unieval_results_save_path = os.path.join(unieval_base_save_path, "evaluation_results")
unieval.save_unieval_results(model_name_list[0], self.unieval_metric_stats, unieval_results_save_path)
# Save charts and csv.
unieval_analyses_save_path = os.path.join(unieval_base_save_path, "evaluation_analyses")
unieval.analyze_unieval_results(unieval_results_save_path, unieval_analyses_save_path)
if self.gpt_evaluation_results:
# Save evaluation results for GPT evaluation metrics.
gpt_base_save_path = os.path.join(path, "gpt_evaluate", "gpt_evaluate_results")
gpt_evaluation_results_save_path = os.path.join(gpt_base_save_path, "evaluation_results")
all_evaluations = gpt_evaluate.save_gpt_evaluation_results(model_name_list[0],
self.gpt_evaluation_results,
gpt_evaluation_results_save_path)
# Start to calculate scores and save statistics.
gpt_evaluation_statistics_save_path = os.path.join(gpt_base_save_path, "evaluation_statistics")
gpt_evaluate.save_gpt_evaluation_statistics(model_name_list[0], all_evaluations,
gpt_evaluation_statistics_save_path)
# Save charts and csv.
gpt_evaluation_analyses_save_path = os.path.join(gpt_base_save_path, "evaluation_analyses")
gpt_evaluate.analyze_gpt_evaluation_statistics(gpt_evaluation_statistics_save_path,
gpt_evaluation_analyses_save_path)