You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/extensions/csrc/cuda/multi_tensor_l2norm_kernel.cu

383 lines
13 KiB

// modified from
// https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_l2norm_kernel.cu
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
#include <c10/cuda/CUDAGuard.h>
// Another possibility:
// #include <torch/all.h>
#include <assert.h>
#include "multi_tensor_apply.cuh"
#include "type_shim.h"
#define BLOCK_SIZE 512
#define ILP 4
template <typename T>
__device__ __forceinline__ bool is_aligned(T *p) {
return ((uint64_t)p) % (ILP * sizeof(T)) == 0;
}
template <typename T>
__device__ __forceinline__ void load_store(T *dst, T *src, int dst_offset,
int src_offset) {
typedef
typename std::aligned_storage<ILP * sizeof(T), ILP * alignof(T)>::type LT;
((LT *)dst)[dst_offset] = ((LT *)src)[src_offset];
}
template <typename x_t>
struct L2NormFunctor {
__device__ __forceinline__ void operator()(
int chunk_size, volatile int *noop_gmem, TensorListMetadata<1> &tl,
float *output, float *output_per_tensor, bool per_tensor,
int max_chunks_per_tensor) {
// I'd like this kernel to propagate infs/nans.
// if(*noop_gmem == 1)
// return;
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.sizes[tensor_loc];
x_t *x = (x_t *)tl.addresses[0][tensor_loc];
x += chunk_idx * chunk_size;
n -= chunk_idx * chunk_size;
__shared__ float s_vals[512];
float vals[ILP]; // = {0}; // this probably works too but I want to be
// sure...
x_t r_x[ILP];
for (int i = 0; i < ILP; i++) {
vals[i] = 0.f;
r_x[i] = 0;
}
// to make things simple, we put aligned case in a different code path
if (n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x)) {
for (int i_start = threadIdx.x;
i_start * ILP < n && i_start * ILP < chunk_size;
i_start += blockDim.x) {
// load
load_store(r_x, x, 0, i_start);
#pragma unroll
for (int ii = 0; ii < ILP; ii++) {
float next = static_cast<float>(r_x[ii]);
vals[ii] += next * next;
}
}
} else {
for (int i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * ILP) {
#pragma unroll
for (int ii = 0; ii < ILP; ii++) {
int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size) {
float next = static_cast<float>(x[i]);
vals[ii] += next * next;
}
}
}
}
float val = 0.f;
for (int i = 0; i < ILP; i++) val += vals[i];
float final = reduce_block_into_lanes(s_vals, val);
if (threadIdx.x == 0) {
if (!isfinite(final))
*noop_gmem =
1; // Blindly fire off a write. These will race but that's ok.
output[blockIdx.x] += final;
if (per_tensor)
output_per_tensor[(tl.start_tensor_this_launch + tensor_loc) *
max_chunks_per_tensor +
chunk_idx] = final;
}
}
};
// Probably better to template, but since we are not likely to support other
// norm
template <typename x_t>
struct MaxNormFunctor {
__device__ __forceinline__ void operator()(
int chunk_size, volatile int *noop_gmem, TensorListMetadata<1> &tl,
float *output, float *output_per_tensor, bool per_tensor,
int max_chunks_per_tensor) {
// I'd like this kernel to propagate infs/nans.
// if(*noop_gmem == 1)
// return;
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.sizes[tensor_loc];
x_t *x = (x_t *)tl.addresses[0][tensor_loc];
x += chunk_idx * chunk_size;
n -= chunk_idx * chunk_size;
__shared__ float s_vals[512];
float vals[ILP]; // = {0}; // this probably works too but I want to be
// sure...
x_t r_x[ILP];
for (int i = 0; i < ILP; i++) {
vals[i] = 0.f;
r_x[i] = 0;
}
// to make things simple, we put aligned case in a different code path
if (n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x)) {
for (int i_start = threadIdx.x;
i_start * ILP < n && i_start * ILP < chunk_size;
i_start += blockDim.x) {
// load
load_store(r_x, x, 0, i_start);
#pragma unroll
for (int ii = 0; ii < ILP; ii++) {
float next = static_cast<float>(r_x[ii]);
vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next));
}
}
} else {
for (int i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * ILP) {
#pragma unroll
for (int ii = 0; ii < ILP; ii++) {
int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size) {
float next = static_cast<float>(x[i]);
vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next));
}
}
}
}
float val = 0.f;
for (int i = 0; i < ILP; i++) val = fmaxf(fabsf(val), fabsf(vals[i]));
float final = reduce_block_into_lanes_max_op(s_vals, val);
if (threadIdx.x == 0) {
if (!isfinite(final))
*noop_gmem =
1; // Blindly fire off a write. These will race but that's ok.
output[blockIdx.x] = fmaxf(fabsf(output[blockIdx.x]), fabsf(final));
if (per_tensor)
output_per_tensor[(tl.start_tensor_this_launch + tensor_loc) *
max_chunks_per_tensor +
chunk_idx] = final;
}
}
};
__global__ void cleanup(float *output, float *output_per_tensor, float *ret,
float *ret_per_tensor, bool per_tensor,
int max_chunks_per_tensor) {
__shared__ float vals[512];
if (blockIdx.x == 0) {
float val = 0;
if (threadIdx.x < 320) val = output[threadIdx.x];
float final = reduce_block_into_lanes(vals, val);
if (threadIdx.x == 0) *ret = sqrt(final);
}
if (per_tensor) {
float *output_this_tensor =
output_per_tensor + blockIdx.x * max_chunks_per_tensor;
float val = 0;
for (int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
val += output_this_tensor[i];
float final = reduce_block_into_lanes(vals, val);
if (threadIdx.x == 0) ret_per_tensor[blockIdx.x] = sqrt(final);
}
}
__global__ void cleanup_v2(float *output, float *output_per_tensor, float *ret,
float *ret_per_tensor, bool per_tensor,
int max_chunks_per_tensor, int norm_type,
float alpha, float beta) {
__shared__ float vals[512];
if (blockIdx.x == 0) {
float val = 0;
if (threadIdx.x < 320) val = output[threadIdx.x];
if (norm_type == 0) {
float final = reduce_block_into_lanes_max_op(vals, val);
if (threadIdx.x == 0) *ret = alpha * (*ret) + beta * final;
} else {
float final = reduce_block_into_lanes(vals, val);
if (threadIdx.x == 0) *ret = sqrt(alpha * (*ret) * (*ret) + beta * final);
}
}
if (per_tensor) {
float *output_this_tensor =
output_per_tensor + blockIdx.x * max_chunks_per_tensor;
if (norm_type == 0) {
float val = 0;
for (int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
val = fmaxf(fabsf(val), fabsf(output_this_tensor[i]));
float final = reduce_block_into_lanes_max_op(vals, val);
if (threadIdx.x == 0)
ret_per_tensor[blockIdx.x] =
alpha * ret_per_tensor[blockIdx.x] + beta * final;
} else {
float val = 0;
for (int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
val += output_this_tensor[i];
float final = reduce_block_into_lanes(vals, val);
if (threadIdx.x == 0)
ret_per_tensor[blockIdx.x] = sqrt(alpha * ret_per_tensor[blockIdx.x] *
ret_per_tensor[blockIdx.x] +
beta * final);
}
}
}
std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
int chunk_size, at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::optional<bool> per_tensor_python) {
bool per_tensor =
per_tensor_python.has_value() ? per_tensor_python.value() : false;
auto float_options = tensor_lists[0][0].options().dtype(at::kFloat);
auto output = at::zeros({320}, float_options);
at::Tensor output_per_tensor;
at::Tensor ret_per_tensor;
int ntensors = tensor_lists[0].size();
int max_chunks_per_tensor = -1;
if (per_tensor) {
for (int t = 0; t < ntensors; t++) {
int max_chunks_this_tensor =
(tensor_lists[0][t].numel() + chunk_size - 1) / chunk_size;
if (max_chunks_this_tensor > max_chunks_per_tensor)
max_chunks_per_tensor = max_chunks_this_tensor;
}
output_per_tensor =
at::zeros({ntensors * max_chunks_per_tensor}, float_options);
ret_per_tensor = at::empty({ntensors}, float_options);
} else {
ret_per_tensor = at::empty({0}, float_options);
}
DISPATCH_FLOAT_AND_HALF(
tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda",
multi_tensor_apply<1>(
BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
L2NormFunctor<scalar_t_0>(), output.DATA_PTR<float>(),
per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr,
per_tensor, max_chunks_per_tensor);)
AT_CUDA_CHECK(cudaGetLastError());
// AT_CUDA_CHECK(cudaDeviceSynchronize());
// This involves one more small kernel launches, but will be negligible end to
// end. I could get rid of these by hacking the functor + multi tensor harness
// with persistence logic, but keeping it simple for now
auto ret = at::empty({1}, output.options());
const at::cuda::OptionalCUDAGuard device_guard(device_of(output));
auto stream = at::cuda::getCurrentCUDAStream();
cleanup<<<per_tensor ? ntensors : 1, 512, 0, stream>>>(
output.DATA_PTR<float>(),
per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr,
ret.DATA_PTR<float>(),
per_tensor ? ret_per_tensor.DATA_PTR<float>() : nullptr, per_tensor,
max_chunks_per_tensor);
return std::tuple<at::Tensor, at::Tensor>(ret, ret_per_tensor);
}
// Compute and update grad norm
// Here use a per tensor norm, and blend new norm(n) and old norm(gn) by
// L-2: gn = sqrt(a * gn^2 + b * n^2)
// L-inf: gn = a * gn + b * n
void multi_tensor_norm_out_cuda(
int chunk_size, at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists, at::Tensor out,
const float alpha, const float beta, const int norm_type) {
auto float_options = tensor_lists[0][0].options().dtype(at::kFloat);
TORCH_CHECK(tensor_lists[0][0].device() == noop_flag.device(),
"noop flag should be on the same device as tensors");
// we don't need global thus uses empty here
auto output = at::empty({320}, float_options);
at::Tensor output_per_tensor;
at::Tensor ret_per_tensor;
int ntensors = tensor_lists[0].size();
int max_chunks_per_tensor = -1;
for (int t = 0; t < ntensors; t++) {
int max_chunks_this_tensor =
(tensor_lists[0][t].numel() + chunk_size - 1) / chunk_size;
if (max_chunks_this_tensor > max_chunks_per_tensor)
max_chunks_per_tensor = max_chunks_this_tensor;
}
// Although it is single write then read, still need to be zero
// Since tailing element also participate cleanup
output_per_tensor =
at::zeros({ntensors * max_chunks_per_tensor}, float_options);
if (norm_type == 0) {
DISPATCH_FLOAT_AND_HALF(
tensor_lists[0][0].scalar_type(), 0, "multi_tensor_maxnorm_cuda",
multi_tensor_apply<1>(
BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
MaxNormFunctor<scalar_t_0>(), output.DATA_PTR<float>(),
output_per_tensor.DATA_PTR<float>(), true, max_chunks_per_tensor);)
} else {
DISPATCH_FLOAT_AND_HALF(
tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda",
multi_tensor_apply<1>(
BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
L2NormFunctor<scalar_t_0>(), output.DATA_PTR<float>(),
output_per_tensor.DATA_PTR<float>(), true, max_chunks_per_tensor);)
}
AT_CUDA_CHECK(cudaGetLastError());
// AT_CUDA_CHECK(cudaDeviceSynchronize());
// This involves one more small kernel launches, but will be negligible end to
// end. I could get rid of these by hacking the functor + multi tensor harness
// with persistence logic, but keeping it simple for now
auto ret = at::empty({1}, output.options());
// Adding the following device guard since it happens sometimes that the
// tensors are on one device and the cuda stream is on another device which
// results in ILLEGAL MEM ACCESS error.
const at::cuda::OptionalCUDAGuard device_guard(device_of(output));
auto stream = at::cuda::getCurrentCUDAStream();
cleanup_v2<<<ntensors, 512, 0, stream>>>(
output.DATA_PTR<float>(), output_per_tensor.DATA_PTR<float>(),
ret.DATA_PTR<float>(), out.DATA_PTR<float>(), true, max_chunks_per_tensor,
norm_type, alpha, beta);
return;
}