mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
7.8 KiB
215 lines
7.8 KiB
from typing import Dict, List, Tuple
|
|
|
|
import torch
|
|
from torch import Tensor, inf
|
|
from torch.nn import Module, Parameter
|
|
from torch.optim import Optimizer
|
|
|
|
from colossalai.interface import OptimizerWrapper
|
|
|
|
from .mixed_precision_mixin import BF16MixedPrecisionMixin, FP16MixedPrecisionMixin
|
|
|
|
|
|
class NaiveFP16MixedPrecisionMixin(FP16MixedPrecisionMixin):
|
|
def __init__(
|
|
self,
|
|
working_params: List[Parameter],
|
|
initial_scale: float = 2**16,
|
|
min_scale: float = 1,
|
|
growth_factor: float = 2,
|
|
backoff_factor: float = 0.5,
|
|
growth_interval: int = 1000,
|
|
hysteresis: int = 2,
|
|
max_scale: float = 2**32,
|
|
) -> None:
|
|
super().__init__(
|
|
initial_scale, min_scale, growth_factor, backoff_factor, growth_interval, hysteresis, max_scale
|
|
)
|
|
self.params = working_params
|
|
|
|
def check_local_overflow(self) -> bool:
|
|
for p in self.params:
|
|
if p.grad is not None and not torch.isfinite(p.grad).all():
|
|
return True
|
|
return False
|
|
|
|
|
|
class MixedPrecisionOptimizer(OptimizerWrapper):
|
|
def __init__(
|
|
self,
|
|
optim: Optimizer,
|
|
precision: str = "fp16",
|
|
initial_scale: float = 2**16,
|
|
min_scale: float = 1,
|
|
growth_factor: float = 2,
|
|
backoff_factor: float = 0.5,
|
|
growth_interval: int = 1000,
|
|
hysteresis: int = 2,
|
|
max_scale: float = 2**32,
|
|
max_norm: float = 0.0,
|
|
):
|
|
super().__init__(optim)
|
|
if precision == "fp16":
|
|
working_params = []
|
|
for group in self.optim.param_groups:
|
|
for p in group["params"]:
|
|
working_params.append(p)
|
|
self.mixed_precision = NaiveFP16MixedPrecisionMixin(
|
|
working_params,
|
|
initial_scale=initial_scale,
|
|
min_scale=min_scale,
|
|
growth_factor=growth_factor,
|
|
backoff_factor=backoff_factor,
|
|
growth_interval=growth_interval,
|
|
hysteresis=hysteresis,
|
|
max_scale=max_scale,
|
|
)
|
|
elif precision == "bf16":
|
|
self.mixed_precision = BF16MixedPrecisionMixin()
|
|
else:
|
|
raise ValueError(f"Unsupported precision: {precision}")
|
|
self.max_norm = max_norm
|
|
self.working_to_master_map: Dict[Parameter, Tensor] = {}
|
|
self.master_to_working_map: Dict[Tensor, Parameter] = {}
|
|
|
|
# create master weights
|
|
for group in self.optim.param_groups:
|
|
master_params = []
|
|
for p in group["params"]:
|
|
if p.requires_grad:
|
|
master_p = p
|
|
if p.dtype != torch.float:
|
|
master_p = p.detach().float()
|
|
self.working_to_master_map[p] = master_p
|
|
self.master_to_working_map[master_p] = p
|
|
master_params.append(master_p)
|
|
group["params"] = master_params
|
|
|
|
def backward(self, loss: Tensor, *args, **kwargs):
|
|
loss = self.mixed_precision.pre_backward(loss)
|
|
loss.backward(*args, **kwargs)
|
|
|
|
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
|
|
grad = self.mixed_precision.pre_backward_by_grad(tensor, grad)
|
|
tensor.backward(grad)
|
|
|
|
def zero_grad(self, *args, **kwargs):
|
|
for p in self.working_to_master_map.keys():
|
|
p.grad = None
|
|
self.mixed_precision.pre_zero_grad()
|
|
return super().zero_grad(*args, **kwargs)
|
|
|
|
def _unscale_and_clip_grads(self, total_norm: float) -> None:
|
|
"""
|
|
Unscale and clip gradients before performing the optimization step.
|
|
|
|
Args:
|
|
total_norm (float): The computed total gradient norm.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
div_scale = 1.0
|
|
|
|
# If mixed-precision training is used, get the gradient division scale from the mixed-precision handler.
|
|
if self.mixed_precision is not None:
|
|
div_scale = self.mixed_precision.get_grad_div_scale()
|
|
|
|
if self.max_norm > 0.0:
|
|
# Calculate the scaling factor for gradient clipping
|
|
# The gradient norm is scaled by 'div_scale' and then clipped to 'max_norm'
|
|
clip = ((total_norm / div_scale) + 1e-6) / self.max_norm
|
|
|
|
# If the clip factor exceeds 1, adjust 'div_scale' accordingly to ensure clipping
|
|
if clip > 1:
|
|
div_scale = clip * div_scale
|
|
|
|
# Apply the scaling factor to gradients
|
|
for group in self.param_groups:
|
|
for p in group["params"]:
|
|
if p.grad is None:
|
|
continue
|
|
p.grad.data.mul_(1.0 / div_scale)
|
|
|
|
def _compute_grad_norm(self, param_gradient_pairs: List[Tuple[Tensor]], norm_type: int = 2) -> int:
|
|
r"""
|
|
Compute and return the gradient norm for gradient clipping.
|
|
|
|
Args:
|
|
param_gradient_pairs (List[Tuple[Tensor]]): List of (parameter, gradient) pairs; gradients are used for norm calculation.
|
|
norm_type (int, optional): Type of the norm used (e.g., 2 for L2 norm). Defaults to 2.
|
|
|
|
Returns:
|
|
float: The total norm of the given gradients.
|
|
"""
|
|
|
|
if len(param_gradient_pairs) == 0:
|
|
return 0.0
|
|
|
|
# gradients used for norm calculation.
|
|
gradients = [grad for param, grad in param_gradient_pairs]
|
|
|
|
if norm_type == inf:
|
|
total_norm = max(grad.data.abs().max() for grad in gradients)
|
|
|
|
else:
|
|
total_norm_exponentiated = 0.0
|
|
for grad in gradients:
|
|
total_norm_exponentiated += grad.data.double().norm(norm_type) ** norm_type
|
|
total_norm = total_norm_exponentiated ** (1.0 / norm_type)
|
|
|
|
return total_norm
|
|
|
|
def step(self, *args, **kwargs):
|
|
if self.mixed_precision.should_skip_step():
|
|
self.zero_grad()
|
|
return
|
|
# prepare grads
|
|
for group in self.optim.param_groups:
|
|
for p in group["params"]:
|
|
working_param = self.master_to_working_map[p]
|
|
if p is working_param:
|
|
continue
|
|
if working_param.grad is not None:
|
|
p.grad = working_param.grad.data.float()
|
|
working_param.grad = None
|
|
|
|
# gradient unscale and clip.
|
|
if self.max_norm <= 0:
|
|
# no need to compute gradient norm.
|
|
total_norm = 0.0
|
|
else:
|
|
# compute the total norm.
|
|
param_gradient_pairs = [
|
|
(self.master_to_working_map[p], p.grad)
|
|
for group in self.param_groups
|
|
for p in group["params"]
|
|
if p.grad is not None
|
|
]
|
|
total_norm = self._compute_grad_norm(param_gradient_pairs)
|
|
self._unscale_and_clip_grads(total_norm)
|
|
|
|
self.optim.step(*args, **kwargs)
|
|
# update working params
|
|
for group in self.optim.param_groups:
|
|
for p in group["params"]:
|
|
working_param = self.master_to_working_map[p]
|
|
if p is working_param:
|
|
continue
|
|
working_param.data.copy_(p.data)
|
|
|
|
def update_master_params(self, model: Module):
|
|
# Update master params from working params
|
|
with torch.no_grad():
|
|
for p in model.parameters():
|
|
if (p is None) or (p not in self.working_to_master_map):
|
|
continue
|
|
master_param = self.working_to_master_map[p]
|
|
master_param.data.copy_(p.data)
|
|
|
|
def get_working_to_master_map(self) -> Dict[int, torch.Tensor]:
|
|
return {id(working_p): master_p for working_p, master_p in self.working_to_master_map.items()}
|
|
|
|
def get_master_to_working_map(self) -> Dict[int, torch.Tensor]:
|
|
return {id(master_p): working_p for master_p, working_p in self.master_to_working_map.items()}
|