mirror of https://github.com/hpcaitech/ColossalAI
507 lines
21 KiB
Python
Executable File
507 lines
21 KiB
Python
Executable File
import argparse
|
|
import json
|
|
import os
|
|
import resource
|
|
from contextlib import nullcontext
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from coati.dataset import (
|
|
DataCollatorForPromptDataset,
|
|
DataCollatorForSupervisedDataset,
|
|
StatefulDistributedSampler,
|
|
load_tokenized_dataset,
|
|
setup_conversation_template,
|
|
setup_distributed_dataloader,
|
|
)
|
|
from coati.models import Critic, RewardModel, convert_to_lora_module, disable_dropout
|
|
from coati.trainer import PPOTrainer
|
|
from coati.utils import load_checkpoint
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin
|
|
from colossalai.cluster import DistCoordinator
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
logger = get_dist_logger()
|
|
|
|
|
|
def train(args):
|
|
# check lora compatibility
|
|
if "gemini" in args.plugin and args.lora_rank > 0:
|
|
raise ValueError("LoRA is not supported in GeminiPlugin. Please use other plugin")
|
|
if args.plugin == "gemini_auto" and args.accumulation_steps > 1:
|
|
raise ValueError("Gradient accumulation is not supported in GeminiPlugin. Please use other plugin")
|
|
# ==============================
|
|
# Initialize Distributed Training
|
|
# ==============================
|
|
colossalai.launch_from_torch({})
|
|
coordinator = DistCoordinator()
|
|
|
|
# ======================================================
|
|
# Initialize Model, Objective, Optimizer and LR Scheduler
|
|
# ======================================================
|
|
# Temp Fix: Disable lazy init due to version conflict
|
|
# init_ctx = (
|
|
# LazyInitContext(default_device=get_current_device()) if isinstance(plugin, (GeminiPlugin,)) else nullcontext()
|
|
# )
|
|
|
|
init_ctx = nullcontext()
|
|
booster_policy = None
|
|
with init_ctx:
|
|
if args.use_flash_attn:
|
|
actor = AutoModelForCausalLM.from_pretrained(
|
|
args.pretrain,
|
|
torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16,
|
|
use_flash_attention_2=True,
|
|
local_files_only=True,
|
|
)
|
|
ref_model = AutoModelForCausalLM.from_pretrained(
|
|
args.pretrain,
|
|
torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16,
|
|
use_flash_attention_2=True,
|
|
local_files_only=True,
|
|
)
|
|
reward_model = RewardModel(
|
|
args.rm_pretrain,
|
|
torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16,
|
|
use_flash_attention_2=True,
|
|
)
|
|
critic = Critic(
|
|
args.rm_pretrain,
|
|
torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16,
|
|
use_flash_attention_2=True,
|
|
)
|
|
coordinator.print_on_master(msg="Flash-attention enabled successfully")
|
|
else:
|
|
actor = AutoModelForCausalLM.from_pretrained(args.pretrain, local_files_only=True)
|
|
ref_model = AutoModelForCausalLM.from_pretrained(args.pretrain, local_files_only=True)
|
|
reward_model = RewardModel(args.rm_pretrain)
|
|
critic = Critic(args.rm_pretrain)
|
|
# Disable dropout
|
|
disable_dropout(actor)
|
|
disable_dropout(critic)
|
|
|
|
if args.tp > 1:
|
|
if reward_model.model.config.architectures[0] != critic.model.config.architectures[0]:
|
|
raise ValueError("Reward model and critic model must have the same architecture")
|
|
if reward_model.model.config.architectures[0] == "BloomForCausalLM":
|
|
from colossalai.shardformer.policies.bloom import BloomPolicy
|
|
|
|
booster_policy = BloomPolicy()
|
|
elif reward_model.model.config.architectures[0] == "LlamaForCausalLM":
|
|
from colossalai.shardformer.policies.llama import LlamaPolicy
|
|
|
|
booster_policy = LlamaPolicy()
|
|
elif reward_model.model.config.architectures[0] == "GPT2LMHeadModel":
|
|
from colossalai.shardformer.policies.gpt2 import GPT2Policy
|
|
|
|
booster_policy = GPT2Policy()
|
|
elif reward_model.model.config.architectures[0] == "ChatGLMModel":
|
|
from colossalai.shardformer.policies.chatglm2 import ChatGLMPolicy
|
|
|
|
booster_policy = ChatGLMPolicy()
|
|
elif reward_model.model.config.architectures[0] == "OPTForCausalLM":
|
|
from colossalai.shardformer.policies.opt import OPTPolicy
|
|
|
|
booster_policy = OPTPolicy()
|
|
else:
|
|
raise ValueError("Unknown model architecture for policy")
|
|
|
|
if args.lora_rank > 0:
|
|
actor = convert_to_lora_module(actor, args.lora_rank, lora_train_bias=args.lora_train_bias)
|
|
critic = convert_to_lora_module(critic, args.lora_rank, lora_train_bias=args.lora_train_bias)
|
|
|
|
if args.grad_checkpoint and args.lora_rank == 0:
|
|
actor.gradient_checkpointing_enable()
|
|
critic.model.gradient_checkpointing_enable()
|
|
coordinator.print_on_master(msg="Gradient checkpointing enabled successfully")
|
|
elif args.lora_rank > 0:
|
|
coordinator.print_on_master(msg="Gradient checkpointing will be disabled when LoRA is enabled")
|
|
|
|
# configure tokenizer
|
|
tokenizer_dir = args.tokenizer_dir if args.tokenizer_dir is not None else args.pretrain
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, use_fast=False, trust_remote_code=True)
|
|
if os.path.exists(args.conversation_template_config):
|
|
with open(args.conversation_template_config, "r", encoding="utf8") as f:
|
|
conversation_template_config = json.load(f)
|
|
dist.barrier()
|
|
conversation_template = setup_conversation_template(
|
|
tokenizer, chat_template_config=conversation_template_config, save_path=args.conversation_template_config
|
|
)
|
|
stop_ids = conversation_template.stop_ids if len(conversation_template.stop_ids) > 0 else None
|
|
else:
|
|
raise ValueError("Conversation template config is not provided or incorrect")
|
|
if hasattr(tokenizer, "pad_token") and hasattr(tokenizer, "eos_token") and tokenizer.eos_token is not None:
|
|
try:
|
|
# Some tokenizers doesn't allow to set pad_token mannually e.g., Qwen
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
except AttributeError as e:
|
|
logger.warning(f"Unable to set pad token to eos token, {str(e)}")
|
|
if not hasattr(tokenizer, "pad_token") or tokenizer.pad_token is None:
|
|
logger.warning(
|
|
"The tokenizer does not have a pad token which is required. May lead to unintended behavior in training, Please consider manually set them."
|
|
)
|
|
|
|
tokenizer.add_bos_token = False
|
|
tokenizer.add_eos_token = False
|
|
tokenizer.padding_side = "left" # left padding for generation (online learning)
|
|
|
|
# configure generation config
|
|
actor.generation_config.update(
|
|
pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id
|
|
)
|
|
|
|
# configure optimizer
|
|
coordinator.print_on_master(f"setting up optimizer for actor: lr={args.lr}, weight_decay={args.weight_decay}")
|
|
actor_optim = HybridAdam(
|
|
model_params=actor.parameters(),
|
|
lr=args.lr,
|
|
betas=(0.9, 0.95),
|
|
weight_decay=args.weight_decay,
|
|
adamw_mode=True,
|
|
)
|
|
|
|
coordinator.print_on_master(f"setting up optimizer for critic: lr={args.lr}, weight_decay={args.weight_decay}")
|
|
critic_optim = HybridAdam(
|
|
model_params=critic.parameters(),
|
|
lr=args.critic_lr,
|
|
betas=(0.9, 0.95),
|
|
weight_decay=args.weight_decay,
|
|
adamw_mode=True,
|
|
)
|
|
|
|
# configure dataset
|
|
coordinator.print_on_master(f"Load dataset: {args.prompt_dataset}")
|
|
mode_map = {"train": "train", "valid": "validation", "test": "test"}
|
|
train_prompt_dataset = load_tokenized_dataset(dataset_paths=args.prompt_dataset, mode="train", mode_map=mode_map)
|
|
data_collator = DataCollatorForPromptDataset(tokenizer=tokenizer, max_length=args.max_length - args.max_seq_len)
|
|
train_prompt_dataloader = setup_distributed_dataloader(
|
|
dataset=train_prompt_dataset,
|
|
batch_size=args.experience_batch_size,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
collate_fn=data_collator,
|
|
use_tp=args.tp > 1,
|
|
)
|
|
|
|
if len(args.ptx_dataset) > 0:
|
|
train_ptx_dataset = load_tokenized_dataset(dataset_paths=args.ptx_dataset, mode="train", mode_map=mode_map)
|
|
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_length)
|
|
train_pretrain_dataloader = setup_distributed_dataloader(
|
|
dataset=train_ptx_dataset,
|
|
batch_size=args.ptx_batch_size,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
collate_fn=data_collator,
|
|
use_tp=args.tp > 1,
|
|
)
|
|
else:
|
|
train_pretrain_dataloader = None
|
|
|
|
if args.warmup_steps is None:
|
|
args.warmup_steps = int(0.025 * args.num_episodes)
|
|
coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}")
|
|
|
|
actor_lr_scheduler = CosineAnnealingWarmupLR(
|
|
optimizer=actor_optim,
|
|
total_steps=args.num_episodes,
|
|
warmup_steps=args.warmup_steps,
|
|
eta_min=0.1 * args.lr,
|
|
)
|
|
|
|
critic_lr_scheduler = CosineAnnealingWarmupLR(
|
|
optimizer=critic_optim,
|
|
total_steps=args.num_episodes,
|
|
warmup_steps=args.warmup_steps,
|
|
eta_min=0.1 * args.lr,
|
|
)
|
|
|
|
# ==============================
|
|
# Initialize Booster
|
|
# ==============================
|
|
if args.plugin == "ddp":
|
|
"""
|
|
Default torch ddp plugin without any acceleration, for
|
|
debugging purpose acceleration, for debugging purpose
|
|
"""
|
|
plugin = TorchDDPPlugin(find_unused_parameters=True)
|
|
elif args.plugin == "gemini":
|
|
plugin = GeminiPlugin(
|
|
precision=args.mixed_precision,
|
|
placement_policy="static",
|
|
initial_scale=2**16,
|
|
max_norm=args.grad_clip,
|
|
enable_gradient_accumulation=True,
|
|
)
|
|
elif args.plugin == "gemini_auto":
|
|
plugin = GeminiPlugin(
|
|
precision=args.mixed_precision,
|
|
placement_policy="auto",
|
|
initial_scale=2**16,
|
|
max_norm=args.grad_clip,
|
|
)
|
|
elif args.plugin == "zero2":
|
|
plugin = LowLevelZeroPlugin(
|
|
stage=2,
|
|
precision=args.mixed_precision,
|
|
initial_scale=2**16,
|
|
max_norm=args.grad_clip,
|
|
)
|
|
elif args.plugin == "zero2_cpu":
|
|
plugin = LowLevelZeroPlugin(
|
|
stage=2,
|
|
precision=args.mixed_precision,
|
|
initial_scale=2**16,
|
|
cpu_offload=True,
|
|
max_norm=args.grad_clip,
|
|
)
|
|
elif args.plugin == "3d":
|
|
plugin = HybridParallelPlugin(
|
|
tp_size=args.tp,
|
|
pp_size=1,
|
|
zero_stage=0,
|
|
parallel_output=False,
|
|
precision=args.mixed_precision,
|
|
)
|
|
custom_plugin = HybridParallelPlugin(
|
|
tp_size=args.tp,
|
|
pp_size=1,
|
|
zero_stage=0,
|
|
parallel_output=False,
|
|
precision=args.mixed_precision,
|
|
custom_policy=booster_policy,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown plugin {args.plugin}")
|
|
|
|
if args.plugin != "3d":
|
|
custom_plugin = plugin
|
|
|
|
actor_booster = Booster(plugin=plugin)
|
|
ref_booster = Booster(plugin=plugin)
|
|
rm_booster = Booster(plugin=custom_plugin)
|
|
critic_booster = Booster(plugin=custom_plugin)
|
|
|
|
default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16
|
|
torch.set_default_dtype(default_dtype)
|
|
actor, actor_optim, _, train_prompt_dataloader, actor_lr_scheduler = actor_booster.boost(
|
|
model=actor,
|
|
optimizer=actor_optim,
|
|
lr_scheduler=actor_lr_scheduler,
|
|
dataloader=train_prompt_dataloader,
|
|
)
|
|
|
|
critic, critic_optim, _, _, critic_lr_scheduler = critic_booster.boost(
|
|
model=critic,
|
|
optimizer=critic_optim,
|
|
lr_scheduler=critic_lr_scheduler,
|
|
dataloader=train_prompt_dataloader,
|
|
)
|
|
reward_model, _, _, _, _ = rm_booster.boost(model=reward_model, dataloader=train_prompt_dataloader)
|
|
ref_model, _, _, _, _ = ref_booster.boost(model=ref_model, dataloader=train_prompt_dataloader)
|
|
|
|
torch.set_default_dtype(torch.float)
|
|
|
|
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB")
|
|
coordinator.print_on_master(
|
|
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
|
|
)
|
|
|
|
sampler_start_idx = 0
|
|
start_step = 0
|
|
|
|
if args.rm_checkpoint_path is not None:
|
|
if "modeling" in args.rm_checkpoint_path:
|
|
rm_booster.load_model(reward_model, args.rm_checkpoint_path)
|
|
else:
|
|
_, _, _ = load_checkpoint(
|
|
load_dir=args.rm_checkpoint_path,
|
|
booster=rm_booster,
|
|
model=reward_model,
|
|
optimizer=None,
|
|
lr_scheduler=None,
|
|
)
|
|
coordinator.print_on_master(f"Loaded reward model checkpoint {args.rm_checkpoint_path}")
|
|
|
|
if args.checkpoint_path is not None:
|
|
if "modeling" in args.checkpoint_path:
|
|
actor_booster.load_model(actor, args.checkpoint_path)
|
|
ref_booster.load_model(ref_model, args.checkpoint_path)
|
|
coordinator.print_on_master(f"Loaded actor and reference model {args.checkpoint_path}")
|
|
else:
|
|
_, start_step, sampler_start_idx = load_checkpoint(
|
|
load_dir=args.checkpoint_path,
|
|
booster=actor_booster,
|
|
model=actor,
|
|
optimizer=actor_optim,
|
|
lr_scheduler=actor_lr_scheduler,
|
|
)
|
|
_, _, _ = load_checkpoint(
|
|
load_dir=args.checkpoint_path,
|
|
booster=ref_booster,
|
|
model=ref_model,
|
|
optimizer=critic_optim,
|
|
lr_scheduler=critic_lr_scheduler,
|
|
)
|
|
assert isinstance(train_prompt_dataloader.sampler, StatefulDistributedSampler)
|
|
train_prompt_dataloader.sampler.set_start_index(start_index=sampler_start_idx)
|
|
|
|
coordinator.print_on_master(
|
|
f"Loaded actor and reference model checkpoint {args.checkpoint_path} at spisode {start_step}"
|
|
)
|
|
coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}")
|
|
|
|
coordinator.print_on_master(
|
|
f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
|
)
|
|
coordinator.print_on_master(
|
|
f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB"
|
|
)
|
|
coordinator.print_on_master(
|
|
f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
|
|
)
|
|
|
|
if args.critic_checkpoint_path is not None:
|
|
if "modeling" in args.critic_checkpoint_path:
|
|
critic_booster.load_model(critic, args.critic_checkpoint_path)
|
|
else:
|
|
_, _, _ = load_checkpoint(
|
|
load_dir=args.critic_checkpoint_path,
|
|
booster=critic_booster,
|
|
model=critic,
|
|
optimizer=critic_optim,
|
|
lr_scheduler=critic_lr_scheduler,
|
|
)
|
|
coordinator.print_on_master(f"Loaded critic checkpoint {args.critic_checkpoint_path}")
|
|
coordinator.print_on_master(
|
|
f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
|
)
|
|
coordinator.print_on_master(
|
|
f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB"
|
|
)
|
|
coordinator.print_on_master(
|
|
f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
|
|
)
|
|
|
|
# configure trainer
|
|
trainer = PPOTrainer(
|
|
actor_booster,
|
|
critic_booster,
|
|
actor,
|
|
critic,
|
|
reward_model,
|
|
ref_model,
|
|
actor_optim,
|
|
critic_optim,
|
|
actor_lr_scheduler,
|
|
critic_lr_scheduler,
|
|
tokenizer=tokenizer,
|
|
stop_token_ids=stop_ids,
|
|
kl_coef=args.kl_coef,
|
|
ptx_coef=args.ptx_coef,
|
|
train_batch_size=args.train_batch_size,
|
|
buffer_limit=args.num_collect_steps * args.experience_batch_size,
|
|
max_length=args.max_length,
|
|
max_new_tokens=args.max_seq_len,
|
|
use_cache=True,
|
|
do_sample=True,
|
|
temperature=0.7,
|
|
accumulation_steps=args.accumulation_steps,
|
|
save_dir=args.save_path,
|
|
save_interval=args.save_interval,
|
|
top_k=50,
|
|
use_tp=args.tp > 1,
|
|
offload_inference_models="gemini" not in args.plugin,
|
|
coordinator=coordinator,
|
|
)
|
|
|
|
trainer.fit(
|
|
num_episodes=args.num_episodes,
|
|
num_collect_steps=args.num_collect_steps,
|
|
num_update_steps=args.num_update_steps,
|
|
prompt_dataloader=train_prompt_dataloader,
|
|
pretrain_dataloader=train_pretrain_dataloader,
|
|
log_dir=args.log_dir,
|
|
use_wandb=args.use_wandb,
|
|
)
|
|
|
|
if args.lora_rank > 0 and args.merge_lora_weights:
|
|
from coati.models.lora import LORA_MANAGER
|
|
|
|
# NOTE: set model to eval to merge LoRA weights
|
|
LORA_MANAGER.merge_weights = True
|
|
actor.eval()
|
|
critic.eval()
|
|
# save model checkpoint after fitting on only rank0
|
|
coordinator.print_on_master("Start saving final actor model checkpoint")
|
|
actor_booster.save_model(actor, os.path.join(trainer.actor_save_dir, "modeling"), shard=True)
|
|
coordinator.print_on_master(
|
|
f"Saved final actor model checkpoint at episodes {args.num_episodes} at folder {args.save_path}"
|
|
)
|
|
coordinator.print_on_master("Start saving final critic model checkpoint")
|
|
critic_booster.save_model(critic, os.path.join(trainer.critic_save_dir, "modeling"), shard=True)
|
|
coordinator.print_on_master(
|
|
f"Saved final critic model checkpoint at episodes {args.num_episodes} at folder {args.save_path}"
|
|
)
|
|
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--prompt_dataset", nargs="+", default=[])
|
|
parser.add_argument("--ptx_dataset", nargs="+", default=[])
|
|
parser.add_argument(
|
|
"--plugin",
|
|
type=str,
|
|
default="gemini",
|
|
choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d"],
|
|
help="Choose which plugin to use",
|
|
)
|
|
parser.add_argument(
|
|
"--conversation_template_config",
|
|
type=str,
|
|
default=None,
|
|
help="Path \
|
|
to save conversation template config files.",
|
|
)
|
|
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value")
|
|
parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay")
|
|
parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps")
|
|
parser.add_argument("--tokenizer_dir", type=str, default=None)
|
|
parser.add_argument("--tp", type=int, default=1)
|
|
parser.add_argument("--pretrain", type=str, default=None)
|
|
parser.add_argument("--rm_pretrain", type=str, default=None)
|
|
parser.add_argument("--checkpoint_path", type=str, default=None)
|
|
parser.add_argument("--critic_checkpoint_path", type=str, default=None)
|
|
parser.add_argument("--rm_checkpoint_path", type=str, help="Reward model checkpoint path")
|
|
parser.add_argument("--save_path", type=str, default="actor_checkpoint_prompts")
|
|
parser.add_argument("--num_episodes", type=int, default=1)
|
|
parser.add_argument("--num_collect_steps", type=int, default=2)
|
|
parser.add_argument("--num_update_steps", type=int, default=5)
|
|
parser.add_argument("--save_interval", type=int, default=1000)
|
|
parser.add_argument("--train_batch_size", type=int, default=16)
|
|
parser.add_argument("--experience_batch_size", type=int, default=16)
|
|
parser.add_argument("--ptx_batch_size", type=int, default=4)
|
|
parser.add_argument("--lora_train_bias", type=str, default="none")
|
|
parser.add_argument("--mixed_precision", type=str, default="fp16", choices=["fp16", "bf16"], help="Mixed precision")
|
|
parser.add_argument("--accumulation_steps", type=int, default=8)
|
|
parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank")
|
|
parser.add_argument("--merge_lora_weights", type=bool, default=True)
|
|
parser.add_argument("--lr", type=float, default=9e-6)
|
|
parser.add_argument("--critic_lr", type=float, default=9e-6)
|
|
parser.add_argument("--kl_coef", type=float, default=0.1)
|
|
parser.add_argument("--ptx_coef", type=float, default=0.0)
|
|
parser.add_argument("--max_length", type=int, default=2048)
|
|
parser.add_argument("--max_seq_len", type=int, default=256)
|
|
parser.add_argument("--log_dir", default="logs", type=str)
|
|
parser.add_argument("--use_wandb", default=False, action="store_true")
|
|
parser.add_argument("--grad_checkpoint", default=False, action="store_true")
|
|
parser.add_argument("--use_flash_attn", default=False, action="store_true")
|
|
args = parser.parse_args()
|
|
train(args)
|