ColossalAI/colossalai/legacy/inference/tensor_parallel/modeling/chatglm2.py

546 lines
22 KiB
Python

import os
from typing import Optional, Tuple
import torch
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
from colossalai.kernel.triton.token_attention_kernel import Llama2TokenAttentionForwards
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import (
ChatGLMForConditionalGeneration,
ChatGLMModel,
GLMBlock,
GLMTransformer,
SelfAttention,
split_tensor_along_last_dim,
)
from ._utils import copy_kv_to_mem_cache
try:
from lightllm.models.chatglm2.triton_kernel.rotary_emb import rotary_emb_fwd as chatglm2_rotary_emb_fwd
from lightllm.models.llama2.triton_kernel.context_flashattention_nopad import (
context_attention_fwd as lightllm_llama2_context_attention_fwd,
)
HAS_LIGHTLLM_KERNEL = True
except:
print("please install lightllm from source to run inference: https://github.com/ModelTC/lightllm")
HAS_LIGHTLLM_KERNEL = False
# This func is same as Llama model init_to_get_rotary, we should move them into _utils.py
def _init_to_get_rotary(self, base=10000):
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
if not hasattr(self.config, "rope_scaling"):
rope_scaling_factor = 1.0
else:
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
if hasattr(self.config, "max_sequence_length"):
max_seq_len = self.config.max_sequence_length
elif hasattr(self.config, "max_position_embeddings"):
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
else:
max_seq_len = 2048 * rope_scaling_factor
base = float(base)
# NTK ref: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
try:
ntk_alpha = float(os.environ.get("INFER_NTK_ALPHA", 1))
assert ntk_alpha >= 1
if ntk_alpha > 1:
print(f"Note: NTK enabled, alpha set to {ntk_alpha}")
max_seq_len *= ntk_alpha
base = base * (ntk_alpha ** (self.head_dim_ / (self.head_dim_ - 2))) # Base change formula
except:
pass
n_elem = self.config.head_dim_ // 2
inv_freq = 1.0 / (base ** (torch.arange(0, n_elem, 2, device="cpu", dtype=torch.float32) / n_elem))
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
freqs = torch.outer(t, inv_freq)
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda()
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()
return
def get_masks(self, input_ids, past_length, padding_mask=None):
batch_size, seq_length = input_ids.shape
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
full_attention_mask.tril_()
if past_length:
full_attention_mask = torch.cat(
(
torch.ones(batch_size, seq_length, past_length, device=input_ids.device),
full_attention_mask,
),
dim=-1,
)
if padding_mask is not None:
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
if not past_length and padding_mask is not None:
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
full_attention_mask = (full_attention_mask < 0.5).bool()
full_attention_mask.unsqueeze_(1)
return full_attention_mask
class ChatGLM2InferenceForwards:
"""
This class holds forwards for Chatglm2 inference.
We intend to replace the forward methods for ChatGLMModel, ChatGLMEecoderLayer, and ChatGLMAttention.
"""
@staticmethod
def chatglm_for_conditional_generation_forward(
self: ChatGLMForConditionalGeneration,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
infer_state = self.infer_state
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if infer_state.is_context_stage:
past_key_values_length = 0
else:
past_key_values_length = infer_state.max_len_in_batch - 1
seq_length_with_past = seq_length + past_key_values_length
# prefill stage at first
if use_cache and seq_length != 1:
infer_state.is_context_stage = True
infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num)
infer_state.init_block_loc(
infer_state.block_loc, infer_state.seq_len, seq_length, infer_state.context_mem_index
)
else:
infer_state.is_context_stage = False
alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size)
if alloc_mem is not None:
infer_state.decode_is_contiguous = True
infer_state.decode_mem_index = alloc_mem[0]
infer_state.decode_mem_start = alloc_mem[1]
infer_state.decode_mem_end = alloc_mem[2]
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index
else:
print(f" *** Encountered allocation non-contiguous")
print(
f" infer_state.cache_manager.past_key_values_length: {infer_state.cache_manager.past_key_values_length}"
)
infer_state.decode_is_contiguous = False
alloc_mem = infer_state.cache_manager.alloc(batch_size)
infer_state.decode_mem_index = alloc_mem
# infer_state.decode_key_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
# infer_state.decode_value_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index
# related to rotary embedding
if infer_state.is_context_stage:
infer_state.position_cos = torch.index_select(self._cos_cached, 0, position_ids.view(-1)).view(
position_ids.view(-1).shape[0], -1
)
infer_state.position_sin = torch.index_select(self._sin_cached, 0, position_ids.view(-1)).view(
position_ids.view(-1).shape[0], -1
)
else:
seq_len = infer_state.seq_len
infer_state.position_cos = torch.index_select(self._cos_cached, 0, seq_len - 1).view(seq_len.shape[0], -1)
infer_state.position_sin = torch.index_select(self._sin_cached, 0, seq_len - 1).view(seq_len.shape[0], -1)
infer_state.other_kv_index = infer_state.block_loc[0, infer_state.max_len_in_batch - 1].item()
transformer_outputs = self.transformer(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
infer_state=infer_state,
)
hidden_states = transformer_outputs[0]
if return_last_logit:
hidden_states = hidden_states[-1:]
lm_logits = self.transformer.output_layer(hidden_states)
lm_logits = lm_logits.transpose(0, 1).contiguous()
loss = None
if labels is not None:
lm_logits = lm_logits.to(torch.float32)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@staticmethod
def chatglm_model_forward(
self: ChatGLMModel,
input_ids,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
full_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
infer_state: BatchInferState = None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length = input_ids.shape
if inputs_embeds is None:
inputs_embeds = self.embedding(input_ids)
if self.pre_seq_len is not None:
if past_key_values is None:
past_key_values = self.get_prompt(
batch_size=batch_size,
device=input_ids.device,
dtype=inputs_embeds.dtype,
)
if attention_mask is not None:
attention_mask = torch.cat(
[
attention_mask.new_ones((batch_size, self.pre_seq_len)),
attention_mask,
],
dim=-1,
)
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
full_attention_mask = get_masks(
self, input_ids, infer_state.cache_manager.past_key_values_length, padding_mask=attention_mask
)
# Run encoder.
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds,
full_attention_mask,
kv_caches=past_key_values,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
infer_state=infer_state,
)
# update indices
# infer_state.block_loc[:, infer_state.max_len_in_batch-1] = infer_state.total_token_num + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
infer_state.seq_len += 1
infer_state.max_len_in_batch += 1
if not return_dict:
return tuple(
v
for v in [
hidden_states,
presents,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
@staticmethod
def chatglm_encoder_forward(
self: GLMTransformer,
hidden_states,
attention_mask,
kv_caches=None,
use_cache: Optional[bool] = True,
output_hidden_states: Optional[bool] = False,
infer_state: Optional[BatchInferState] = None,
):
hidden_states = hidden_states.transpose(0, 1).contiguous()
if not kv_caches:
kv_caches = [None for _ in range(self.num_layers)]
presents = () if use_cache else None
all_self_attentions = None
all_hidden_states = () if output_hidden_states else None
infer_state.decode_layer_id = 0
for index in range(self.num_layers):
layer = self.layers[index]
layer_ret = layer(
hidden_states,
attention_mask,
kv_cache=kv_caches[index],
use_cache=use_cache,
infer_state=infer_state,
)
infer_state.decode_layer_id += 1
hidden_states, kv_cache = layer_ret
if use_cache:
presents = presents + (kv_cache,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# Final layer norm.
hidden_states = hidden_states.transpose(0, 1).contiguous()
if self.post_layer_norm:
hidden_states = self.final_layernorm(hidden_states)
return hidden_states, presents, all_hidden_states, all_self_attentions
@staticmethod
def chatglm_glmblock_forward(
self: GLMBlock,
hidden_states,
attention_mask,
kv_cache=None,
use_cache=True,
infer_state: Optional[BatchInferState] = None,
):
# hidden_states: [s, b, h]
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Self attention.
attention_output, kv_cache = self.self_attention(
layernorm_output,
attention_mask,
kv_cache=kv_cache,
use_cache=use_cache,
infer_state=infer_state,
)
# Residual connection.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
layernorm_input = residual + layernorm_input
# Layer norm post the self attention.
layernorm_output = self.post_attention_layernorm(layernorm_input)
# MLP.
mlp_output = self.mlp(layernorm_output)
# Second residual connection.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = layernorm_input
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
output = residual + output
return output, kv_cache
@staticmethod
def chatglm_flash_attn_kvcache_forward(
self: SelfAttention,
hidden_states,
attention_mask,
kv_cache=None,
use_cache=True,
infer_state: Optional[BatchInferState] = None,
):
assert use_cache is True, "use_cache should be set to True using this chatglm attention"
# hidden_states: original :[sq, b, h] --> this [b, sq, h]
batch_size = hidden_states.shape[0]
hidden_size = hidden_states.shape[-1]
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
mixed_x_layer = self.query_key_value(hidden_states)
if self.multi_query_attention:
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
[
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
],
dim=-1,
)
query_layer = query_layer.view(
query_layer.size()[:-1]
+ (
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
)
)
key_layer = key_layer.view(
key_layer.size()[:-1]
+ (
self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head,
)
)
value_layer = value_layer.view(
value_layer.size()[:-1]
+ (
self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head,
)
)
else:
new_tensor_shape = mixed_x_layer.size()[:-1] + (
self.num_attention_heads_per_partition,
3 * self.hidden_size_per_attention_head,
)
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
cos, sin = infer_state.position_cos, infer_state.position_sin
chatglm2_rotary_emb_fwd(
query_layer.view(-1, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head), cos, sin
)
if self.multi_query_attention:
chatglm2_rotary_emb_fwd(
key_layer.view(-1, self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head),
cos,
sin,
)
else:
chatglm2_rotary_emb_fwd(
key_layer.view(-1, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head),
cos,
sin,
)
# reshape q k v to [bsz*sql, num_heads, head_dim] 2*1 ,32/2 ,128
query_layer = query_layer.reshape(
-1, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head
)
key_layer = key_layer.reshape(
-1, self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head
)
value_layer = value_layer.reshape(
-1, self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head
)
if infer_state.is_context_stage:
# first token generation:
# copy key and value calculated in current step to memory manager
copy_kv_to_mem_cache(
infer_state.decode_layer_id,
key_layer,
value_layer,
infer_state.context_mem_index,
infer_state.cache_manager,
)
attn_output = torch.empty_like(query_layer.contiguous().view(-1, self.projection_size))
# NOTE: no bug in context attn fwd (del it )
lightllm_llama2_context_attention_fwd(
query_layer,
key_layer,
value_layer,
attn_output.view(-1, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head),
infer_state.start_loc,
infer_state.seq_len,
infer_state.max_len_in_batch,
)
else:
if infer_state.decode_is_contiguous:
# if decode is contiguous, then we copy to key cache and value cache in cache manager directly
cache_k = infer_state.cache_manager.key_buffer[infer_state.decode_layer_id][
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
]
cache_v = infer_state.cache_manager.value_buffer[infer_state.decode_layer_id][
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
]
cache_k.copy_(key_layer)
cache_v.copy_(value_layer)
else:
# if decode is not contiguous, use triton kernel to copy key and value cache
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head
copy_kv_to_mem_cache(
infer_state.decode_layer_id,
key_layer,
value_layer,
infer_state.decode_mem_index,
infer_state.cache_manager,
)
# second token and follows
attn_output = torch.empty_like(query_layer.contiguous().view(-1, self.projection_size))
cache_k = infer_state.cache_manager.key_buffer[infer_state.decode_layer_id][
: infer_state.decode_mem_end, :, :
]
cache_v = infer_state.cache_manager.value_buffer[infer_state.decode_layer_id][
: infer_state.decode_mem_end, :, :
]
# ==================================
# core attention computation is replaced by triton kernel
# ==================================
Llama2TokenAttentionForwards.token_attn(
query_layer,
cache_k,
cache_v,
attn_output,
infer_state.block_loc,
infer_state.start_loc,
infer_state.seq_len,
infer_state.max_len_in_batch,
infer_state.other_kv_index,
)
# print('after attention',torch.isnan(attn_output).any())
# =================
# Output:[b,sq, h]
# =================
output = self.dense(attn_output).reshape(batch_size, -1, hidden_size)
return output, kv_cache