ColossalAI/colossalai/inference/spec/struct.py

57 lines
2.1 KiB
Python

from dataclasses import dataclass
from typing import Optional, Tuple
import torch
@dataclass
class DrafterOutput:
"""
Dataclass for drafter model outputs.
Args:
speculated_length (int): Speculated length of the output sequence
It is always less than or equal to spec_num during drafter's speculation process
logits (torch.FloatTensor): Logits of the output sequence
next_tokens (torch.Tensor): Next token ids
past_key_values (Optional[Tuple[Tuple[torch.FloatTensor]]]): Past key values of the output sequence
"""
speculated_length: int = None
logits: torch.FloatTensor = None
next_tokens: torch.Tensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
def __post_init__(self):
assert self.speculated_length is not None and self.speculated_length >= 0
if self.past_key_values is not None:
assert isinstance(self.past_key_values, tuple), "Past key values should be a tuple"
assert all([isinstance(past_key_value, tuple) for past_key_value in self.past_key_values])
@dataclass
class GlideInput:
"""Dataclass for Glide Models (e.g. `colossalai/inference/modeling/models/glide_llama.py`).
Used for pack data that will be used during glimpsing KV Caches of the main model.
Args:
block_tables (torch.Tensor): [num_seqs, max_blocks_per_seq] The block table of KV Caches.
large_k_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_size]
Blocked key cache of the main model
large_v_cache (torch.Tensor): Blocked value cache of the main model. It has the same shape as k cache.
sequence_lengths (torch.Tensor): [num_seqs] Sequence lengths of the current batch.
"""
block_tables: torch.Tensor = None
large_k_cache: torch.Tensor = None
large_v_cache: torch.Tensor = None
sequence_lengths: torch.Tensor = None
n_spec_tokens: int = 5
@property
def glimpse_ready(self):
return all(
attr is not None
for attr in [self.block_tables, self.large_k_cache, self.large_v_cache, self.sequence_lengths]
)