ColossalAI/colossalai/amp/apex_amp/apex_amp.py

39 lines
1.0 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.nn as nn
try:
import apex.amp as apex_amp
except ImportError:
pass
from torch import Tensor
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.utils import clip_grad_norm_fp32
class ApexAMPOptimizer(ColossalaiOptimizer):
""" A wrapper class for APEX optimizer and it implements apex-specific backward and clip_grad_norm
methods
"""
def backward(self, loss: Tensor):
"""Backward pass to get all gradients
Args:
loss (torch.Tensor): Loss computed by a loss function
"""
with apex_amp.scale_loss(loss, self.optim) as scaled_loss:
scaled_loss.backward()
def clip_grad_norm(self, model: nn.Module, max_norm: float):
"""Clip gradients' norm
Args:
model (torch.nn.Module): Your model object
max_norm (float): The max norm value for gradient clipping
"""
if max_norm > 0:
clip_grad_norm_fp32(apex_amp.master_params(self.optim), max_norm)