mirror of https://github.com/hpcaitech/ColossalAI
173 lines
5.2 KiB
Python
173 lines
5.2 KiB
Python
import pytest
|
||
import torch
|
||
|
||
import colossalai
|
||
from colossalai.logging import disable_existing_loggers
|
||
from colossalai.shardformer.layer.utils import Randomizer
|
||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||
from colossalai.testing import (
|
||
assert_hf_output_close,
|
||
clear_cache_before_run,
|
||
parameterize,
|
||
rerun_if_address_is_in_use,
|
||
spawn,
|
||
)
|
||
from tests.kit.model_zoo import model_zoo
|
||
from tests.test_shardformer.test_model._utils import (
|
||
build_model_from_hybrid_plugin,
|
||
check_grad,
|
||
check_loss,
|
||
check_output_hidden_state,
|
||
check_weight,
|
||
run_forward_backward_with_hybrid_plugin,
|
||
)
|
||
|
||
|
||
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
||
# check forward
|
||
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = \
|
||
build_model_from_hybrid_plugin(model_fn, loss_fn, test_config)
|
||
|
||
org_loss, org_output, sharded_loss, sharded_output = \
|
||
run_forward_backward_with_hybrid_plugin(
|
||
org_model,
|
||
sharded_model,
|
||
sharded_optimizer,
|
||
data_gen_fn,
|
||
output_transform_fn,
|
||
criterion,
|
||
booster)
|
||
|
||
stage_manager = booster.plugin.stage_manager
|
||
tp_group = booster.plugin.tp_group
|
||
|
||
# check last hidden state & loss
|
||
if stage_manager is None or stage_manager.is_last_stage():
|
||
if test_config['precision'] == 'fp32':
|
||
atol, rtol = 1e-3, 1e-3
|
||
else:
|
||
atol, rtol = 5e-3, 5e-3
|
||
|
||
if org_model.__class__.__name__ == 'WhisperModel':
|
||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
|
||
|
||
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||
|
||
# unwarp the model
|
||
if org_model.__class__.__name__ == 'WhisperForConditionalGeneration':
|
||
whisper = org_model.model
|
||
sharded_whisper = sharded_model.unwrap().model
|
||
else:
|
||
whisper = org_model
|
||
sharded_whisper = sharded_model.unwrap()
|
||
|
||
# check grad
|
||
if org_model.__class__.__name__ == 'WhisperForAudioClassification':
|
||
col_layer_for_check = ['encoder.layers[0].self_attn.q_proj']
|
||
row_layer_for_check = ['encoder.layers[0].self_attn.out_proj']
|
||
else:
|
||
col_layer_for_check = [
|
||
'encoder.layers[0].self_attn.q_proj',
|
||
# 'decoder.layers[0].self_attn.q_proj'
|
||
]
|
||
row_layer_for_check = [
|
||
'encoder.layers[0].self_attn.out_proj',
|
||
#'decoder.layers[0].self_attn.out_proj'
|
||
]
|
||
|
||
# check weights and gradients
|
||
if test_config['precision'] == 'fp32':
|
||
atol, rtol = 1e-3, 1e-3
|
||
else:
|
||
atol, rtol = 5e-3, 5e-3
|
||
|
||
if stage_manager is None or stage_manager.is_first_stage():
|
||
check_grad(whisper, sharded_whisper, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0)
|
||
check_grad(whisper, sharded_whisper, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1)
|
||
|
||
# check weights after optimizer.step()
|
||
org_optimizer.step()
|
||
sharded_optimizer.step()
|
||
if test_config['precision'] == 'fp32':
|
||
atol, rtol = 1e-3, 1e-3
|
||
else:
|
||
atol, rtol = 5e-3, 5e-3
|
||
if stage_manager is None or stage_manager.is_first_stage():
|
||
check_weight(whisper,
|
||
sharded_whisper,
|
||
row_layer_for_check,
|
||
tp_group,
|
||
atol=atol,
|
||
rtol=rtol,
|
||
dim=0,
|
||
verbose=False)
|
||
check_weight(whisper,
|
||
sharded_whisper,
|
||
col_layer_for_check,
|
||
tp_group,
|
||
atol=atol,
|
||
rtol=rtol,
|
||
dim=0,
|
||
verbose=False)
|
||
|
||
torch.cuda.empty_cache()
|
||
|
||
|
||
# TODO(jianghai) fix fp16
|
||
@parameterize('test_config', [{
|
||
'tp_size': 2,
|
||
'pp_size': 2,
|
||
'num_microbatches': 2,
|
||
'enable_all_optimization': True,
|
||
'use_lazy_init': True,
|
||
'precision': 'fp32',
|
||
'initial_scale': 1,
|
||
}, {
|
||
'tp_size': 1,
|
||
'pp_size': 2,
|
||
'num_microbatches': 4,
|
||
'use_lazy_init': False,
|
||
'precision': 'fp32',
|
||
'initial_scale': 1,
|
||
}, {
|
||
'tp_size': 4,
|
||
'pp_size': 1,
|
||
'enable_all_optimization': True,
|
||
'use_lazy_init': False,
|
||
'precision': 'fp32',
|
||
}, {
|
||
'tp_size': 1,
|
||
'pp_size': 4,
|
||
'num_microbatches': 4,
|
||
'use_lazy_init': False,
|
||
'precision': 'fp32',
|
||
}])
|
||
def run_whisper_test(test_config):
|
||
sub_model_zoo = model_zoo.get_sub_registry('transformers_whisper')
|
||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||
|
||
if test_config['pp_size'] > 2 and name == 'transformers_whisper_for_audio_classification':
|
||
continue
|
||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||
|
||
clear_layout_converter()
|
||
Randomizer.reset_index()
|
||
torch.cuda.empty_cache()
|
||
|
||
|
||
def check_whisper(rank, world_size, port):
|
||
disable_existing_loggers()
|
||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||
run_whisper_test()
|
||
|
||
|
||
@pytest.mark.dist
|
||
@rerun_if_address_is_in_use()
|
||
@clear_cache_before_run()
|
||
def test_whisper():
|
||
spawn(check_whisper, 4)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
test_whisper()
|