ColossalAI/colossalai/gemini/memory_tracer/memstats_collector.py

258 lines
9.3 KiB
Python

from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
from colossalai.utils.memory import colo_device_memory_used, colo_device_memory_capacity
from colossalai.utils import get_current_device
from colossalai.gemini.stateful_tensor import StatefulTensor
from colossalai.gemini.chunk import ChunkManager
import torch
import torch.nn as nn
import time
from typing import List, Optional
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.profiler import (calculate_fwd_out, calculate_fwd_tmp, is_compatible_with_meta, parameter_size)
from torch.fx import symbolic_trace
if is_compatible_with_meta():
from colossalai.fx.profiler import MetaTensor
class MemStatsCollector:
"""
A Memory statistic collector.
It works in two phases.
Phase 1. Collection Phase: collect memory usage statistics of CPU and GPU.
The first iteration of DNN training.
Phase 2. Runtime Phase: use the read-only collected stats
The rest iterations of DNN training.
It has a Sampling counter which is reset after DNN training iteration.
"""
def __init__(self) -> None:
self._mem_monitor = SyncCudaMemoryMonitor()
self._model_data_cuda_list = []
self._overall_cuda_list = []
self._model_data_cpu_list = []
self._overall_cpu_list = []
self._non_model_data_cuda_list = []
self._non_model_data_cpu_list = []
self._sampling_time = []
self._start_flag = False
self._step_idx = 0
self._step_total = 0
def overall_mem_stats(self, device_type: str) -> List[int]:
if device_type == 'cuda':
return self._overall_cuda_list
elif device_type == 'cpu':
return self._overall_cpu_list
else:
raise TypeError
def model_data_list(self, device_type: str) -> List[int]:
if device_type == 'cuda':
return self._model_data_cuda_list
elif device_type == 'cpu':
return self._model_data_cpu_list
else:
raise TypeError
def non_model_data_list(self, device_type: str) -> List[int]:
if device_type == 'cuda':
return self._non_model_data_cuda_list
elif device_type == 'cpu':
return self._non_model_data_cpu_list
else:
raise TypeError
def next_period_non_model_data_usage(self, device_type: str) -> int:
"""Get max non model data memory usage of current sampling period
Args:
device_type (str): device type, can be 'cpu' or 'cuda'.
Returns:
int: max non model data memory usage of current sampling period
"""
assert not self._start_flag, 'Cannot get mem stats info during collection phase.'
assert self._step_total > 0, 'Cannot get mem stats info before collection phase.'
next_non_model_data = self.non_model_data_list(device_type)[self._step_idx]
self._step_idx = (self._step_idx + 1) % self._step_total
return next_non_model_data
@property
def sampling_time(self):
return [t - self._sampling_time[0] for t in self._sampling_time]
def start_collection(self):
self._start_flag = True
self._mem_monitor.start()
def finish_collection(self):
self.sample_overall_data()
self._step_total = len(self._sampling_time)
self._start_flag = False
self._mem_monitor.finish()
def sample_model_data(self) -> None:
"""Sampling model data statistics.
"""
if self._start_flag:
cuda_mem = StatefulTensor.GST_MGR.total_mem['cuda']
cpu_mem = StatefulTensor.GST_MGR.total_mem['cpu']
self._model_data_cuda_list.append(cuda_mem)
self._model_data_cpu_list.append(cpu_mem)
def sample_overall_data(self) -> None:
"""Sampling non model data statistics.
"""
if self._start_flag:
# overall data recording is after model data recording
if len(self._model_data_cuda_list) == 0:
return
self._overall_cuda_list.append(self._mem_monitor.finish())
self._overall_cpu_list.append(colo_device_memory_used(torch.device('cpu')))
assert len(self._model_data_cuda_list) == len(self._overall_cuda_list)
self._non_model_data_cuda_list.append(self._overall_cuda_list[-1] - self._model_data_cuda_list[-1])
self._non_model_data_cpu_list.append(self._overall_cpu_list[-1] - self._model_data_cpu_list[-1])
self._sampling_time.append(time.time())
self._mem_monitor.start()
def clear(self) -> None:
self._model_data_cuda_list = []
self._overall_cuda_list = []
self._model_data_cpu_list = []
self._overall_cpu_list = []
self._non_model_data_cpu_list = []
self._non_model_data_cuda_list = []
self._start_flag = False
self._step_idx = 0
self._step_total = 0
class MemStatsCollectorV2(MemStatsCollector):
def __init__(self, chunk_manager: ChunkManager) -> None:
super().__init__()
self._chunk_manager = chunk_manager
def sample_model_data(self) -> None:
"""Sampling model data statistics.
"""
if self._start_flag:
cuda_mem = self._chunk_manager.total_mem['cuda']
cpu_mem = self._chunk_manager.total_mem['cpu']
self._model_data_cuda_list.append(cuda_mem)
self._model_data_cpu_list.append(cpu_mem)
@property
def cuda_margin_mem(self) -> float:
return colo_device_memory_capacity(get_current_device()) - max(self.overall_mem_stats('cuda'))
class MemStatsCollectorStatic(MemStatsCollectorV2):
"""
A Static Memory statistic collector.
"""
def __init__(self, module: nn.Module, chunk_manager: ChunkManager) -> None:
super().__init__(chunk_manager)
self.module = module
self.module_info_list = []
def init_mem_stats(self, *inputs):
self.register_opnodes_recursively(self.module)
self.refactor_module()
self.module = self.module.cpu()
self.module.train()
data = [MetaTensor(torch.rand(inp.shape, device='meta'), fake_device='cpu') for inp in inputs]
gm = symbolic_trace(self.module)
interp = MetaInfoProp(gm)
interp.propagate(*data)
total_mem = 0
for inp in inputs:
total_mem += inp.numel() * inp.element_size()
last_node = None
module_name_list = [mInfo.module_full_name for mInfo in self.module_info_list]
for node in gm.graph.nodes:
total_mem = total_mem + calculate_fwd_tmp(node) + calculate_fwd_out(node)
if node.op == "call_module":
if node.name.endswith("_0") and node.name[:-2] in module_name_list:
self._non_model_data_cuda_list.append(total_mem)
last_node = node
self._non_model_data_cuda_list.append(total_mem)
self._non_model_data_cuda_list = self._non_model_data_cuda_list[1:]
cur_module_mem_fwd = 0
cur_module_mem_bwd = 0
grad_module_out = last_node.meta["fwd_mem_out"]
for node in gm.graph.nodes.__reversed__():
cur_module_mem_fwd = cur_module_mem_fwd + calculate_fwd_tmp(node) + calculate_fwd_out(node)
cur_module_mem_bwd = cur_module_mem_bwd + node.meta["bwd_mem_tmp"] + node.meta["bwd_mem_out"]
if node.op == "call_module":
if node.name.endswith("_0") and node.name[:-2] in module_name_list:
self._non_model_data_cuda_list.append(total_mem + grad_module_out + cur_module_mem_bwd)
total_mem = total_mem - cur_module_mem_fwd
cur_module_mem_fwd = 0
cur_module_mem_bwd = 0
grad_module_out = node.meta["bwd_mem_out"]
self._step_total = len(self._non_model_data_cuda_list)
self.recover_module()
def refactor_module(self):
for modInfo in self.module_info_list:
temp_node = nn.Sequential(nn.ReLU(), modInfo.module)
modInfo.parent_module.__setattr__(modInfo.module_name, temp_node)
def recover_module(self):
for modInfo in self.module_info_list:
modInfo.parent_module.__setattr__(modInfo.module_name, modInfo.module)
def register_opnodes_recursively(self,
module: torch.nn.Module,
name: str = "",
full_name: str = "",
parent_module: Optional[torch.nn.Module] = None):
assert isinstance(module, torch.nn.Module)
for child_name, child in module.named_children():
self.register_opnodes_recursively(child, child_name, full_name + "_" + child_name, module)
# Early return on modules with no parameters.
if len(list(module.parameters(recurse=False))) == 0:
return
self.module_info_list.append(ModuleInfos(module, name, full_name[1:], parent_module))
class ModuleInfos:
def __init__(self,
module: torch.nn.Module,
module_name: str,
module_full_name: str,
parent_module: torch.nn.Module):
self.module = module
self.module_name = module_name
self.module_full_name = module_full_name
self.parent_module = parent_module