ColossalAI/colossalai/shardformer/layer/utils.py

139 lines
4.0 KiB
Python

from contextlib import contextmanager
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
class Randomizer:
"""
Randomizer enables the program to be executed under a different seed within the context.
Example:
```python
randomizer = Randomizer(seed=1024)
with randomizer.fork():
# do something here with seed 1024
do_something()
```
Args:
seed (int): The random seed to set.
enable_cpu (bool): fork the CPU RNG state as well.
with_index (bool): whether to use the index of the randomizer.
"""
_INDEX = 0
def __init__(self, seed: int):
# TODO: remove colossalai.context.random
self.seed = seed
# Handle CUDA rng state
# 1. get the current rng state
# 2. set the seed and store the rng state
# 3. recover the original rng state
cuda_original_rng_state = torch.cuda.get_rng_state()
torch.cuda.manual_seed(seed)
self.cuda_rng_state = torch.cuda.get_rng_state()
torch.cuda.set_rng_state(cuda_original_rng_state)
# to the same for cpu rng state
cpu_original_rng_state = torch.get_rng_state()
torch.manual_seed(seed)
self.cpu_rng_state = torch.get_rng_state()
torch.set_rng_state(cpu_original_rng_state)
def _set_cuda_rng_state(self, rng_state):
torch.cuda.set_rng_state(rng_state)
def _get_cuda_rng_state(self):
current_state = torch.cuda.get_rng_state()
return current_state
def _set_cpu_rng_state(self, rng_state):
torch.set_rng_state(rng_state)
def _get_cpu_rng_state(self):
current_state = torch.get_rng_state()
return current_state
@contextmanager
def fork_rng(self, enable_cpu: bool = False):
"""
This is a context manager to change the dropout state and recover the original state.
Usage:
::
>>> with _seed_manager.dropout_mode():
>>> input = super().forward(input)
"""
try:
current_cuda_rng_state = self._get_cuda_rng_state()
self._set_cuda_rng_state(self.cuda_rng_state)
if enable_cpu:
current_cpu_rng_state = self._get_cpu_rng_state()
self._set_cpu_rng_state(self.cpu_rng_state)
yield
finally:
self.cuda_rng_state = self._get_cuda_rng_state()
self._set_cuda_rng_state(current_cuda_rng_state)
if enable_cpu:
self.cpu_rng_state = self._get_cpu_rng_state()
self._set_cpu_rng_state(current_cpu_rng_state)
@staticmethod
def index():
"""
Return the index of the randomizer. The index is useful when the user wants
to introduce some randomness in the program.
Note:
The index will increment by one each time this method is called.
Example:
```python
# assume we need a randomizer to init the weight of different layers
# we can use the index of the randomizer to do so that
# each layer has its own randomizer with a different seed
base_seed = torch.random.initial_seed()
seed = base_seed + Randomizer.index()
randomizer = Randomizer(seed)
with randomizer.fork():
init_weights()
```
"""
idx = Randomizer._INDEX
Randomizer._INDEX += 1
return idx
def create_randomizer_with_offset(seed: int, process_group: ProcessGroup = None):
"""
Create a randomizer with an offset. The offset is equal to the rank of the process and the index of the randomizer.
Args:
seed (int): The base random seed to set.
enable_cpu (bool): fork the CPU RNG state as well.
process_group (ProcessGroup): the process group to get the rank from.
Returns:
Randomizer: the randomizer with offset.
"""
offset = Randomizer.index()
if dist.is_initialized():
rank = dist.get_rank(process_group)
offset += rank
seed += offset
return Randomizer(seed=seed)