mirror of https://github.com/hpcaitech/ColossalAI
217 lines
7.0 KiB
Python
217 lines
7.0 KiB
Python
import torch
|
|
import torch.distributed as dist
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
try:
|
|
import fused_mix_prec_layer_norm_cuda
|
|
except:
|
|
fused_mix_prec_layer_norm_cuda = None
|
|
|
|
|
|
class FusedLayerNormAffineFunction1D(torch.autograd.Function):
|
|
r"""Layernorm
|
|
|
|
Args:
|
|
input: input matrix.
|
|
weight: weight matrix.
|
|
bias: bias matrix.
|
|
normalized_shape: input shape from an expected input of size.
|
|
:math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]`
|
|
If a single integer is used, it is treated as a singleton list, and this module will
|
|
normalize over the last dimension which is expected to be of that specific size.
|
|
eps: a value added to the denominator for numerical stability
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input, weight, bias, normalized_shape, eps):
|
|
ctx.normalized_shape = normalized_shape
|
|
ctx.eps = eps
|
|
input_ = input.contiguous()
|
|
weight_ = weight.contiguous()
|
|
bias_ = bias.contiguous()
|
|
output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(input_, ctx.normalized_shape, weight_,
|
|
bias_, ctx.eps)
|
|
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
|
|
grad_input = grad_weight = grad_bias = None
|
|
grad_input, grad_weight, grad_bias \
|
|
= fused_mix_prec_layer_norm_cuda.backward_affine(
|
|
grad_output.contiguous(), mean, invvar,
|
|
input_, ctx.normalized_shape,
|
|
weight_, bias_, ctx.eps)
|
|
|
|
return grad_input, grad_weight, grad_bias, None, None
|
|
|
|
|
|
class LinearWithAsyncCommunication(torch.autograd.Function):
|
|
"""
|
|
Linear layer execution with asynchronous communication in backprop.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce):
|
|
ctx.save_for_backward(input_, weight)
|
|
ctx.use_bias = bias is not None
|
|
ctx.process_group = process_group
|
|
ctx.async_grad_allreduce = async_grad_allreduce
|
|
|
|
output = torch.matmul(input_, weight.t())
|
|
if bias is not None:
|
|
output = output + bias
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input, weight = ctx.saved_tensors
|
|
use_bias = ctx.use_bias
|
|
|
|
total_input = input
|
|
grad_input = grad_output.matmul(weight)
|
|
grad_output = grad_output.contiguous()
|
|
# Convert the tensor shapes to 2D for execution compatibility
|
|
if len(grad_output.shape) > 2:
|
|
grad_output = grad_output.view(-1, grad_output.shape[-1])
|
|
total_input = total_input.view(-1, total_input.shape[-1])
|
|
|
|
if ctx.async_grad_allreduce:
|
|
# Asynchronous all-reduce
|
|
handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True)
|
|
# Delay the start of weight gradient computation shortly (3us) to have
|
|
# all-reduce scheduled first and have GPU resources allocated
|
|
_ = torch.empty(1, device=grad_output.device) + 1
|
|
|
|
grad_weight = grad_output.t().matmul(total_input)
|
|
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
|
|
|
if ctx.async_grad_allreduce:
|
|
handle.wait()
|
|
|
|
return grad_input, grad_weight, grad_bias, None, None, None
|
|
|
|
|
|
class _SplitForwardGatherBackward(torch.autograd.Function):
|
|
"""
|
|
Split the input and keep only the corresponding chuck to the rank.
|
|
|
|
Args:
|
|
input_ (`torch.Tensor`): input matrix.
|
|
dim (int): the dimension to perform split and gather
|
|
process_group (`torch.distributed.ProcessGroup`): the process group used for collective communication
|
|
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, dim, process_group):
|
|
ctx.process_group = process_group
|
|
ctx.dim = dim
|
|
return _split(input_, dim, process_group)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return _gather(grad_output, ctx.dim, ctx.process_group), None, None
|
|
|
|
|
|
class _ReduceInput(torch.autograd.Function):
|
|
"""
|
|
All-reduce the input from the model parallel region.
|
|
|
|
Args:
|
|
input_: input matrix.
|
|
parallel_mode: parallel mode.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, process_group):
|
|
return _reduce(input_, process_group)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return grad_output, None
|
|
|
|
|
|
def _reduce(input_, process_group):
|
|
# skip if only one rank involved
|
|
if dist.get_world_size(process_group) == 1:
|
|
return input_
|
|
else:
|
|
dist.all_reduce(input_, group=process_group)
|
|
return input_
|
|
|
|
|
|
def _split(input_, dim=-1, process_group=None):
|
|
# skip if only one rank involved
|
|
world_size = dist.get_world_size(process_group)
|
|
if world_size == 1:
|
|
return input_
|
|
|
|
# Split along last dimension.
|
|
dim_size = input_.size(dim)
|
|
assert dim_size % world_size == 0, \
|
|
f'The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), ' \
|
|
f'cannot split tensor evenly'
|
|
|
|
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
|
|
rank = dist.get_rank(process_group)
|
|
output = tensor_list[rank].contiguous()
|
|
|
|
return output
|
|
|
|
|
|
def _gather(input_, dim=-1, process_group=None):
|
|
# skip if only one rank involved
|
|
world_size = dist.get_world_size(process_group)
|
|
if world_size == 1:
|
|
return input_
|
|
|
|
# all gather
|
|
rank = dist.get_rank(process_group)
|
|
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
|
tensor_list[rank] = input_
|
|
torch.distributed.all_gather(tensor_list, input_, group=process_group)
|
|
|
|
# concat
|
|
output = torch.cat(tensor_list, dim=dim).contiguous()
|
|
|
|
return output
|
|
|
|
|
|
class _GatherForwardSplitBackward(torch.autograd.Function):
|
|
"""Gather the input from model parallel region and concatenate.
|
|
|
|
Args:
|
|
input_: input matrix.
|
|
parallel_mode: parallel mode.
|
|
dim: dimension
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, dim, process_group):
|
|
ctx.process_group = process_group
|
|
ctx.dim = dim
|
|
return _gather(input_, dim, process_group)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return _split(grad_output, ctx.dim, ctx.process_group), None, None
|
|
|
|
|
|
def linear_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce):
|
|
return LinearWithAsyncCommunication.apply(input_, weight, bias, process_group, async_grad_allreduce)
|
|
|
|
|
|
def gather_forward_split_backward(input_, dim, process_group):
|
|
return _GatherForwardSplitBackward.apply(input_, dim, process_group)
|
|
|
|
|
|
def split_forward_gather_backward(input_, dim, process_group):
|
|
return _SplitForwardGatherBackward.apply(input_, dim, process_group)
|
|
|
|
|
|
def reduce_input(input_, process_group):
|
|
return _ReduceInput.apply(input_, process_group)
|