mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
345 lines
14 KiB
345 lines
14 KiB
import torch
|
|
import numpy as np
|
|
from typing import Optional, Dict, Deque, Set, List, Tuple, Iterable
|
|
from collections import deque
|
|
|
|
from colossalai.utils import get_current_device
|
|
from colossalai.tensor import ProcessGroup as ColoProcessGroup, ColoTensor
|
|
from .chunk import Chunk, ChunkFullError, TensorState
|
|
|
|
|
|
class ChunkManager:
|
|
"""
|
|
A manager class to manipulate the tensors in chunks.
|
|
|
|
Args:
|
|
chunk_size (int): the size of a chunk.
|
|
process_group (ColoProcessGroup): process group of the chunk.
|
|
enable_distributed_storage (bool): optional, allow for distributed storage of a chunk. The default is false.
|
|
init_device (torch.device): optional, the device on which the chunk is initialized. The default is None.
|
|
"""
|
|
|
|
def __init__(self,
|
|
chunk_size: Optional[int],
|
|
process_group: ColoProcessGroup,
|
|
enable_distributed_storage: bool = False,
|
|
init_device: Optional[torch.device] = None) -> None:
|
|
assert chunk_size is None or chunk_size > 0
|
|
assert isinstance(process_group, ColoProcessGroup)
|
|
self.chunk_size = chunk_size
|
|
self.process_group = process_group
|
|
self.enable_distributed_storage = enable_distributed_storage
|
|
self.device = init_device or get_current_device()
|
|
self.chunk_groups: Dict[str, Deque[Chunk]] = {}
|
|
self.groups_force_data_on_cuda: Dict[str, bool] = {}
|
|
self.tensor_chunk_map: Dict[torch.Tensor, Chunk] = {}
|
|
self.accessed_chunks: Set[Chunk] = set()
|
|
self.lazy_release_tensors: List[torch.Tensor] = []
|
|
if enable_distributed_storage and chunk_size is None:
|
|
self.rank_load: Dict[str, torch.Tensor] = {}
|
|
self.total_mem: Dict[str, int] = {'cpu': 0, 'cuda': 0}
|
|
|
|
def create_group(self, group_name: str, force_data_on_cuda: bool = False) -> None:
|
|
"""Create a chunk group.
|
|
|
|
Args:
|
|
group_name (str): group name
|
|
force_data_on_cuda (bool, optional): If True, the data of chunks in this group is always on cuda.. Defaults to False.
|
|
"""
|
|
assert group_name not in self.chunk_groups
|
|
self.chunk_groups[group_name] = deque()
|
|
self.groups_force_data_on_cuda[group_name] = force_data_on_cuda
|
|
|
|
def append_tensor(self, tensor: torch.Tensor, group_name: str) -> None:
|
|
"""
|
|
Append a tensor to a chunk.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): a tensor to append to the chunk.
|
|
group_name (str): the name of the chunk group.
|
|
"""
|
|
assert tensor not in self.tensor_chunk_map
|
|
if isinstance(tensor, ColoTensor):
|
|
assert tensor.get_process_group().dp_process_group() == self.process_group.dp_process_group(
|
|
), f"Chunk Manager can only manage ColoTensor with the same DP process group"
|
|
try:
|
|
# append the tensor to the last chunk
|
|
self.chunk_groups[group_name][-1].append(tensor)
|
|
except (IndexError, ChunkFullError):
|
|
# the except statement will be triggered when there is no chunk or
|
|
# the last chunk in the chunk group is full
|
|
# this will create a new chunk and allocate this chunk to its corresponding process
|
|
if self.chunk_size is not None and tensor.numel() > self.chunk_size:
|
|
chunk_size = tensor.numel()
|
|
else:
|
|
chunk_size = self.chunk_size or tensor.numel()
|
|
src_rank = self._get_next_src_rank(group_name)
|
|
chunk = Chunk(chunk_size,
|
|
src_rank,
|
|
self.process_group,
|
|
tensor.dtype,
|
|
self.device,
|
|
force_data_on_cuda=self.groups_force_data_on_cuda[group_name])
|
|
|
|
if self.enable_distributed_storage and self.chunk_size is None:
|
|
self.rank_load[group_name][src_rank] += chunk_size
|
|
|
|
self.chunk_groups[group_name].append(chunk)
|
|
chunk.append(tensor)
|
|
if not chunk.is_empty:
|
|
self.total_mem[chunk.device_type] += chunk.mem
|
|
self.tensor_chunk_map[tensor] = self.chunk_groups[group_name][-1]
|
|
if not self.enable_distributed_storage:
|
|
# as distributed storage is not enabled, there is no need to broadcast
|
|
# chunks, thus we set these chunks as accessed
|
|
self.accessed_chunks.add(self.chunk_groups[group_name][-1])
|
|
|
|
def _get_next_src_rank(self, group_name: str) -> int:
|
|
if not self.enable_distributed_storage:
|
|
# the chunk is owned by the current rank if no distributed storage is enabled
|
|
return self.process_group.dp_local_rank()
|
|
if self.chunk_size is None:
|
|
if group_name not in self.rank_load:
|
|
self.rank_load[group_name] = torch.zeros(self.process_group.dp_world_size(), dtype=torch.int64)
|
|
|
|
# the process owning the tensor will be the process with the smallest number of elements
|
|
src_rank = torch.argmin(self.rank_load[group_name]).item()
|
|
else:
|
|
# chunk is owned by processes in a round-robin fashion
|
|
chunk_idx = len(self.chunk_groups[group_name])
|
|
src_rank = chunk_idx % self.process_group.dp_world_size()
|
|
return src_rank
|
|
|
|
def access_chunk(self, chunk: Chunk) -> None:
|
|
"""
|
|
Synchronize the chunks via broadcast.
|
|
|
|
Args:
|
|
chunk (Chunk): the chunk to synchronize.
|
|
"""
|
|
if chunk in self.accessed_chunks:
|
|
if chunk.device_type != 'cuda':
|
|
self.total_mem[chunk.device_type] -= chunk.mem
|
|
chunk.move_device(get_current_device())
|
|
self.total_mem[chunk.device_type] += chunk.mem
|
|
return
|
|
if not chunk.is_empty:
|
|
# as tensor is moved to the target device
|
|
# the memory consumption of the original device is reduced
|
|
self.total_mem[chunk.device_type] -= chunk.mem
|
|
chunk.access()
|
|
self.accessed_chunks.add(chunk)
|
|
self.total_mem[chunk.device_type] += chunk.mem
|
|
|
|
def release_chunk(self, chunk: Chunk) -> None:
|
|
"""
|
|
Release the memory space of a chunk.
|
|
|
|
Args:
|
|
chunk (Chunk): the chunk to release memory space
|
|
"""
|
|
|
|
if not self.enable_distributed_storage:
|
|
return
|
|
if chunk not in self.accessed_chunks:
|
|
return
|
|
if chunk.can_release:
|
|
chunk.release()
|
|
self.accessed_chunks.remove(chunk)
|
|
if chunk.is_empty:
|
|
# update the memory consumption after releasing
|
|
self.total_mem[chunk.device_type] -= chunk.mem
|
|
|
|
def move_chunk(self, chunk: Chunk, device: torch.device, update_ptr: bool = True) -> None:
|
|
"""
|
|
Move the chunk to the target device.
|
|
|
|
Args:
|
|
chunk (Chunk): the chunk to move to target device
|
|
device (torch.device): target device
|
|
"""
|
|
if chunk.device_type == device.type:
|
|
return
|
|
if chunk.can_move_device and not chunk.is_empty:
|
|
self.total_mem[chunk.device_type] -= chunk.mem
|
|
chunk.move_device(device, update_ptr=update_ptr)
|
|
self.total_mem[chunk.device_type] += chunk.mem
|
|
|
|
def trans_tensor_state(self, tensor: torch.Tensor, state: TensorState) -> None:
|
|
"""
|
|
Transit tensor state according to pre-defined state machine.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): the tensor for state transititon
|
|
state (TensorState): next tensor state for transtition
|
|
"""
|
|
chunk = self.tensor_chunk_map[tensor]
|
|
chunk.tensor_trans_state(tensor, state)
|
|
|
|
def reduce_chunk(self, chunk: Chunk) -> bool:
|
|
"""
|
|
Reduce or all reduce the chunk. If enable_distributed_storage is true, all-reduce is used.
|
|
Otherwise, this method uses reduce.
|
|
|
|
Args:
|
|
chunk (Chunk): the chunk for reduction.
|
|
"""
|
|
if not chunk.can_reduce:
|
|
return False
|
|
self.total_mem[chunk.device_type] -= chunk.mem
|
|
chunk.reduce(is_all_reduce=not self.enable_distributed_storage)
|
|
self.total_mem[chunk.device_type] += chunk.mem
|
|
return True
|
|
|
|
def copy_tensor_to_chunk_slice(self, tensor: torch.Tensor, data: torch.Tensor) -> None:
|
|
"""
|
|
Copy data to the chunk.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): the tensor used to retrive meta information
|
|
data (torch.Tensor): the tensor to be copied to the chunk
|
|
"""
|
|
chunk = self.tensor_chunk_map[tensor]
|
|
chunk.copy_tensor_to_chunk_slice(tensor, data)
|
|
|
|
def get_chunk(self, tensor: torch.Tensor) -> Chunk:
|
|
"""
|
|
Return the chunk owning the tensor.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): a torch tensor object
|
|
"""
|
|
return self.tensor_chunk_map[tensor]
|
|
|
|
def add_lazy_release_tensors(self, tensors: List[torch.Tensor]) -> None:
|
|
"""
|
|
Add tensors to the buffer for lazy release.
|
|
|
|
Args:
|
|
tensors (List[torch.Tensor]): the tensors to be released lazily
|
|
"""
|
|
self.lazy_release_tensors.extend(tensors)
|
|
|
|
def exec_lazy_release(self) -> None:
|
|
"""
|
|
Execute release for tensors added to the lazy release buffer.
|
|
"""
|
|
|
|
for chunk in self.get_chunks(self.lazy_release_tensors):
|
|
self.release_chunk(chunk)
|
|
self.lazy_release_tensors.clear()
|
|
|
|
def __repr__(self) -> str:
|
|
msg = f'Rank {self.process_group.dp_local_rank()}:\n'
|
|
msg += 'Total memory: ' + ', '.join([f'{k}={v}B' for k, v in self.total_mem.items()]) + '\n'
|
|
for group_name, group in self.chunk_groups.items():
|
|
msg += f'Group {group_name}:\n'
|
|
for i, chunk in enumerate(group):
|
|
msg += f'[{i}] {chunk}\n'
|
|
return msg
|
|
|
|
@staticmethod
|
|
def get_chunk_util(chunk_size: int, params_numel: List[int]) -> float:
|
|
"""
|
|
Calculate the utilization rate of a chunk.
|
|
|
|
Args:
|
|
chunk_size (int): the size of a chunk
|
|
params_numel (List[int]): the list of integers representing the number of elements of parameters
|
|
"""
|
|
assert len(params_numel) > 0
|
|
total_size = 0
|
|
total_utilized_size = 0
|
|
cur_chunk_utilized_size = 0
|
|
for size in params_numel:
|
|
assert chunk_size >= size
|
|
total_utilized_size += size
|
|
if total_size == 0 or cur_chunk_utilized_size + size > chunk_size:
|
|
total_size += chunk_size
|
|
cur_chunk_utilized_size = 0
|
|
cur_chunk_utilized_size += size
|
|
return total_utilized_size / total_size
|
|
|
|
@staticmethod
|
|
def search_chunk_size(module: torch.nn.Module,
|
|
search_range: int,
|
|
n_grids: int,
|
|
min_chunk_size: Optional[int] = None,
|
|
filter_exlarge_params: bool = True) -> int:
|
|
"""
|
|
Search for the chunk size for optimal chunk utilization.
|
|
|
|
Args:
|
|
module (torch.nn.Module): a torch module object
|
|
search_range (int): the range of chunk size to search. The actual search range will be from
|
|
max(min_chunk_size, max_param_size) to max(min_chunk_size, max_param_size) + search_range.
|
|
n_grids (int): the number of intervals in the search range
|
|
min_chunk_size (int): optional, the minimum size for a chunk. The default is None.
|
|
|
|
"""
|
|
assert search_range % n_grids == 0
|
|
# TODO(ver217): sort params and filter unused ones
|
|
params_numel = [p.numel() for p in module.parameters()]
|
|
if filter_exlarge_params:
|
|
params_numel = _filter_exlarge_params(params_numel)
|
|
max_param_numel = max(params_numel)
|
|
if min_chunk_size is not None:
|
|
assert min_chunk_size >= max_param_numel
|
|
else:
|
|
min_chunk_size = max_param_numel
|
|
step_size = search_range // n_grids
|
|
max_chunk_util = -1
|
|
best_chunk_size = -1
|
|
for chunk_size in range(min_chunk_size, min_chunk_size + search_range + 1, step_size):
|
|
chunk_util = ChunkManager.get_chunk_util(chunk_size, params_numel)
|
|
if chunk_util > max_chunk_util:
|
|
max_chunk_util = chunk_util
|
|
best_chunk_size = chunk_size
|
|
return best_chunk_size
|
|
|
|
def copy_chunk_group(self, dest_group_name: str, src_group_name: str):
|
|
"""
|
|
Copy chunk data from one group to another group.
|
|
|
|
Args:
|
|
dest_group_name (str): the destination group which receives the copied data
|
|
src_group_name (str): the source group which provides the data to copy
|
|
"""
|
|
for dest_chunk, src_chunk in zip(self.chunk_groups[dest_group_name], self.chunk_groups[src_group_name]):
|
|
if not dest_chunk.is_empty:
|
|
dest_chunk.copy_(src_chunk)
|
|
|
|
def get_chunks(self, tensors: Iterable[torch.Tensor]) -> Tuple[Chunk, ...]:
|
|
"""
|
|
Get all chunks owning the input tensors.
|
|
|
|
Args:
|
|
tensors (Iterable[torch.Tensor]): the tensors used to look for chunks
|
|
"""
|
|
chunks = []
|
|
for tensor in tensors:
|
|
chunk = self.get_chunk(tensor)
|
|
if chunk not in chunks:
|
|
chunks.append(chunk)
|
|
return tuple(chunks)
|
|
|
|
def add_extern_static_tensor(self, tensor: torch.Tensor) -> None:
|
|
"""Add extern static tensor to chunk manager.
|
|
Those tensors won't be managed by chunk manager, but we want to monitor memory usage of them.
|
|
They are "static", which means their shape, dtype, device never change.
|
|
Thus, their memory usage never changes.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): An extern static tensor. E.g. optimizer state.
|
|
"""
|
|
assert tensor not in self.tensor_chunk_map
|
|
self.total_mem[tensor.device.type] += tensor.numel() * tensor.element_size()
|
|
|
|
|
|
def _filter_exlarge_params(params_numel: List[int]) -> List[int]:
|
|
params_numel_arr = np.array(params_numel)
|
|
std = np.std(params_numel_arr)
|
|
mean = np.mean(params_numel_arr)
|
|
upper_limit = mean + 3 * std
|
|
return list(filter(lambda x: x <= upper_limit, params_numel))
|