mirror of https://github.com/hpcaitech/ColossalAI
217 lines
9.3 KiB
Python
217 lines
9.3 KiB
Python
import functools
|
|
import warnings
|
|
from abc import ABC, abstractmethod
|
|
from time import time
|
|
from typing import Dict, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
|
|
from colossalai.legacy.utils.memory import colo_device_memory_capacity
|
|
from colossalai.utils import get_current_device
|
|
from colossalai.zero.gemini.chunk import Chunk
|
|
|
|
from .chunk import Chunk, ChunkManager
|
|
from .memory_tracer import ChunkMemStatsCollector
|
|
|
|
|
|
class PlacementPolicy(ABC):
|
|
need_mem_stats: bool = False
|
|
|
|
def __init__(
|
|
self, chunk_manager: ChunkManager, mem_stats_collector: Optional[ChunkMemStatsCollector] = None, **kwargs
|
|
) -> None:
|
|
self.chunk_manager = chunk_manager
|
|
self.mem_stats_collector: Optional[ChunkMemStatsCollector] = mem_stats_collector
|
|
|
|
@abstractmethod
|
|
def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def setup_grads_device(
|
|
self, params: List[torch.Tensor], grads_device_map: Dict[torch.Tensor, torch.device]
|
|
) -> None:
|
|
raise NotImplementedError
|
|
|
|
|
|
class StaticPlacementPolicy(PlacementPolicy):
|
|
def __init__(
|
|
self,
|
|
chunk_manager: ChunkManager,
|
|
mem_stats_collector: Optional[ChunkMemStatsCollector] = None,
|
|
shard_param_frac: float = 1.0,
|
|
offload_optim_frac: float = 0.0,
|
|
offload_param_frac: float = 0.0,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector)
|
|
if offload_param_frac > 0.0 and (shard_param_frac != 1.0 or offload_optim_frac != 1.0):
|
|
warnings.warn("offload_param_frac is ignored when shard_param_frac != 1.0 or offload_optim_frac != 1.0")
|
|
offload_param_frac = 0.0
|
|
self.shard_param_frac = shard_param_frac
|
|
self.offload_optim_frac = offload_optim_frac
|
|
self.offload_param_frac = offload_param_frac
|
|
# these should be initialized in setup_grads_device
|
|
self.keep_gathered_chunk_mem = 0.0
|
|
self.keep_cuda_chunk_mem = 0.0
|
|
|
|
def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]:
|
|
can_shard_chunk_mem = sum(chunk.chunk_mem for chunk in can_evict_chunks)
|
|
can_offload_chunk_mem = can_shard_chunk_mem
|
|
for chunk in can_evict_chunks:
|
|
if can_shard_chunk_mem <= self.keep_gathered_chunk_mem:
|
|
break
|
|
self.chunk_manager.release_chunk(chunk)
|
|
# real saved mem is chunk_mem - shard_mem, for simplicity we use chunk_mem
|
|
can_shard_chunk_mem -= chunk.chunk_mem
|
|
for chunk in can_evict_chunks:
|
|
if can_offload_chunk_mem <= self.keep_cuda_chunk_mem:
|
|
break
|
|
self.chunk_manager.move_chunk(chunk, torch.device("cpu"))
|
|
# real saved mem is shard_mem, for simplicity we use chunk_mem
|
|
can_offload_chunk_mem -= chunk.chunk_mem
|
|
return 0, 0.0
|
|
|
|
def setup_grads_device(
|
|
self, params: List[torch.Tensor], grads_device_map: Dict[torch.Tensor, torch.device]
|
|
) -> None:
|
|
total_chunk_mem = sum(self.chunk_manager.get_chunk(p).chunk_mem for p in params)
|
|
|
|
offload_optim_chunk_mem = total_chunk_mem * self.offload_optim_frac
|
|
offloaded_optim_chunk_mem = 0
|
|
chunks = set(self.chunk_manager.get_chunk(p) for p in params)
|
|
for chunk in chunks:
|
|
params = chunk.get_tensors()
|
|
# init offload optim settings
|
|
# keep gathered chunks are in CUDA
|
|
if chunk.keep_gathered or offloaded_optim_chunk_mem >= offload_optim_chunk_mem:
|
|
device = get_current_device()
|
|
else:
|
|
device = torch.device("cpu")
|
|
# real offloaded mem is chunk.shard_mem, for simplicity we use chunk mem here
|
|
offloaded_optim_chunk_mem += chunk.chunk_mem
|
|
for p in params:
|
|
grads_device_map[p] = device
|
|
self.keep_gathered_chunk_mem = total_chunk_mem * (1 - self.shard_param_frac)
|
|
self.keep_cuda_chunk_mem = total_chunk_mem * (1 - self.offload_param_frac)
|
|
|
|
|
|
class AutoPlacementPolicy(PlacementPolicy):
|
|
need_mem_stats: bool = True
|
|
|
|
def __init__(
|
|
self,
|
|
chunk_manager: ChunkManager,
|
|
mem_stats_collector: Optional[ChunkMemStatsCollector] = None,
|
|
warmup_non_model_data_ratio: float = 0.8,
|
|
steady_cuda_cap_ratio: float = 0.9,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector)
|
|
# model data will use 1-_warmup_non_model_data_ratio CUDA memory in warmup phase
|
|
# you can set them by AutoPlacementPolicy.set_warmup_non_model_data_ratio()
|
|
# and AutoPlacementPolicy.set_steady_cuda_cap_ratio()
|
|
self._warmup_non_model_data_ratio = warmup_non_model_data_ratio
|
|
self._steady_cuda_cap_ratio = steady_cuda_cap_ratio
|
|
|
|
def evict_tensors(
|
|
self,
|
|
can_evict_chunks: List[Chunk],
|
|
cuda_demand: int = 0,
|
|
warmup: bool = True,
|
|
compute_list: Optional[List[Tuple[Chunk, ...]]] = None,
|
|
compute_idx: int = 0,
|
|
**kwargs,
|
|
) -> Tuple[int, float]:
|
|
"""
|
|
Evict tensors from CUDA device.
|
|
|
|
Args:
|
|
can_evict_chunks (List[StatefulTensor]): the list of tensors that can be evicted.
|
|
cuda_demand (int, optional): the volume of data needed on cuda device. Defaults to 0.
|
|
warmup (bool, optional): a flag indicates whether in the phase of warmup. Defaults to True.
|
|
compute_list (List[StatefulTensor], optional): TODO. Defaults to [].
|
|
compute_idx (int, optional): the idx of computing device. Defaults to 0.
|
|
|
|
Raises:
|
|
RuntimeError:
|
|
|
|
Returns:
|
|
int: the volume of memory that is evicted
|
|
"""
|
|
start = time()
|
|
cuda_capacity = colo_device_memory_capacity(get_current_device())
|
|
used_cuda_model_data = self.chunk_manager.total_mem["cuda"]
|
|
if warmup:
|
|
# We designate a part of CUDA memory for model data in warmup iterations.
|
|
max_cuda_non_model_data_per_period = cuda_capacity * self._warmup_non_model_data_ratio
|
|
else:
|
|
# max non-model-data cuda memory consumption of this sampling moment and the next sampling moment.
|
|
max_cuda_non_model_data_per_period = self.mem_stats_collector.next_period_non_model_data_usage("cuda")
|
|
cuda_capacity *= self._steady_cuda_cap_ratio
|
|
total_cuda_model_data = cuda_capacity - max_cuda_non_model_data_per_period
|
|
avail_cuda_model_data = total_cuda_model_data - used_cuda_model_data
|
|
freed_cuda_model_data = 0
|
|
|
|
if avail_cuda_model_data < cuda_demand:
|
|
# Move cuda_demand - avail_cuda_model_data volume of tensors
|
|
# to_free_cuda_model_data = cuda_demand - avail_cuda_model_data
|
|
to_free_cuda_model_data = cuda_demand - avail_cuda_model_data
|
|
to_free_chunks = can_evict_chunks
|
|
if not warmup:
|
|
to_free_chunks = self._sort_can_evict_chunks(tuple(to_free_chunks), compute_idx, tuple(compute_list))
|
|
# print(self._sort_can_evict_chunks.cache_info())
|
|
for chunk in to_free_chunks:
|
|
if freed_cuda_model_data >= to_free_cuda_model_data:
|
|
break
|
|
|
|
self.chunk_manager.release_chunk(chunk)
|
|
self.chunk_manager.move_chunk(chunk, torch.device("cpu"))
|
|
freed_cuda_model_data += chunk.chunk_mem
|
|
if freed_cuda_model_data < to_free_cuda_model_data:
|
|
raise RuntimeError(
|
|
f"Adjust layout failed! No enough CUDA memory! "
|
|
f"Need {to_free_cuda_model_data}, freed {freed_cuda_model_data}"
|
|
)
|
|
return freed_cuda_model_data, time() - start
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(maxsize=None)
|
|
def _sort_can_evict_chunks(can_evict_chunks: tuple, compute_idx: int, compute_list: tuple) -> list:
|
|
next_compute_idx = {chunk: len(compute_list) for chunk in can_evict_chunks}
|
|
for i in range(len(compute_list) - 1, compute_idx, -1):
|
|
for chunk in compute_list[i]:
|
|
if chunk in next_compute_idx:
|
|
next_compute_idx[chunk] = i
|
|
next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True)
|
|
return [t for (t, idx) in next_compute_idx]
|
|
|
|
def setup_grads_device(
|
|
self, params: List[torch.Tensor], grads_device_map: Dict[torch.Tensor, torch.device]
|
|
) -> None:
|
|
for p in params:
|
|
chunk = self.chunk_manager.get_chunk(p)
|
|
# init offload optim settings
|
|
# keep gathered chunks are in CUDA
|
|
if chunk.keep_gathered:
|
|
grads_device_map[p] = get_current_device()
|
|
else:
|
|
grads_device_map[p] = torch.device("cpu")
|
|
|
|
|
|
class PlacementPolicyFactory:
|
|
policies: Dict[str, Type[PlacementPolicy]] = {
|
|
"auto": AutoPlacementPolicy,
|
|
"static": StaticPlacementPolicy,
|
|
}
|
|
|
|
@staticmethod
|
|
def create(policy_name: str) -> Type[PlacementPolicy]:
|
|
if policy_name not in PlacementPolicyFactory.policies:
|
|
raise TypeError(f"Unknown tensor placement policy {policy_name}")
|
|
return PlacementPolicyFactory.policies[policy_name]
|
|
|
|
@staticmethod
|
|
def get_policy_names():
|
|
return tuple(PlacementPolicyFactory.policies.keys())
|