ColossalAI/colossalai/inference/pipeline/microbatch_manager.py

250 lines
8.8 KiB
Python

from enum import Enum
from typing import Dict
import torch
from ..tensor_parallel.batch_infer_state import BatchInferState
from ..tensor_parallel.kvcache_manager import MemoryManager
__all__ = "MicroBatchManager"
class Status(Enum):
PREFILL = 1
GENERATE = 2
DONE = 3
COOLDOWN = 4
class MicroBatchDescription:
"""
This is the class to record the infomation of each microbatch, and also do some update operation.
This clase is the base class of `HeadMicroBatchDescription` and `BodyMicroBatchDescription`, for more
details, please refer to the doc of these two classes blow.
Args:
inputs_dict (Dict[str, torch.Tensor]): the inputs of current stage. The key should have `input_ids` and `attention_mask`.
output_dict (Dict[str, torch.Tensor]): the outputs of previous stage. The key should have `hidden_states` and `past_key_values`.
"""
def __init__(
self,
inputs_dict: Dict[str, torch.Tensor],
max_input_len: int,
max_output_len: int,
cache_manager: MemoryManager,
) -> None:
self.mb_length = inputs_dict["input_ids"].shape[-1]
self.target_length = self.mb_length + max_output_len
self.infer_state = BatchInferState.init_from_batch(
batch=inputs_dict, max_input_len=max_input_len, max_output_len=max_output_len, cache_manager=cache_manager
)
# print(f"[init] {inputs_dict}, {max_input_len}, {max_output_len}, {cache_manager}, {self.infer_state}")
def update(self, *args, **kwargs):
pass
@property
def state(self):
"""
Return the state of current micro batch, when current length is equal to target length,
the state is DONE, otherwise GENERATE
"""
# TODO: add the condition for early stopping
if self.cur_length == self.target_length:
return Status.DONE
elif self.cur_length == self.target_length - 1:
return Status.COOLDOWN
else:
return Status.GENERATE
@property
def cur_length(self):
"""
Return the current sequnence length of micro batch
"""
class HeadMicroBatchDescription(MicroBatchDescription):
"""
This class is used to record the infomation of the first stage of pipeline, the first stage should have attributes `input_ids` and `attention_mask`
and `new_tokens`, and the `new_tokens` is the tokens generated by the first stage. Also due to the schdule of pipeline, the operation to update the
information and the condition to determine the state is different from other stages.
Args:
inputs_dict (Dict[str, torch.Tensor]): the inputs of current stage. The key should have `input_ids` and `attention_mask`.
output_dict (Dict[str, torch.Tensor]): the outputs of previous stage. The key should have `hidden_states` and `past_key_values`.
"""
def __init__(
self,
inputs_dict: Dict[str, torch.Tensor],
max_input_len: int,
max_output_len: int,
cache_manager: MemoryManager,
) -> None:
super().__init__(inputs_dict, max_input_len, max_output_len, cache_manager)
assert inputs_dict is not None
assert inputs_dict.get("input_ids") is not None and inputs_dict.get("attention_mask") is not None
self.input_ids = inputs_dict["input_ids"]
self.attn_mask = inputs_dict["attention_mask"]
self.new_tokens = None
def update(self, new_token: torch.Tensor = None):
if new_token is not None:
self._update_newtokens(new_token)
if self.state is not Status.DONE and new_token is not None:
self._update_attnmask()
def _update_newtokens(self, new_token: torch.Tensor):
if self.new_tokens is None:
self.new_tokens = new_token
else:
self.new_tokens = torch.cat([self.new_tokens, new_token], dim=-1)
def _update_attnmask(self):
self.attn_mask = torch.cat(
(self.attn_mask, torch.ones((self.attn_mask.shape[0], 1), dtype=torch.int64, device="cuda")), dim=-1
)
@property
def cur_length(self):
"""
When there is no new_token, the length is mb_length, otherwise the sequence length is `mb_length` plus the length of new_token
"""
if self.new_tokens is None:
return self.mb_length
else:
return self.mb_length + len(self.new_tokens[0])
class BodyMicroBatchDescription(MicroBatchDescription):
"""
This class is used to record the infomation of the stages except the first stage of pipeline, the stages should have attributes `hidden_states` and `past_key_values`,
Args:
inputs_dict (Dict[str, torch.Tensor]): will always be `None`. Other stages only receive hiddenstates from previous stage.
"""
def __init__(
self,
inputs_dict: Dict[str, torch.Tensor],
max_input_len: int,
max_output_len: int,
cache_manager: MemoryManager,
) -> None:
super().__init__(inputs_dict, max_input_len, max_output_len, cache_manager)
@property
def cur_length(self):
"""
When there is no kv_cache, the length is mb_length, otherwise the sequence length is `kv_cache[0][0].shape[-2]` plus 1
"""
return self.infer_state.seq_len.max().item()
class MicroBatchManager:
"""
MicroBatchManager is a class that manages the micro batch.
Args:
stage (int): stage id of current stage.
micro_batch_size (int): the micro batch size.
micro_batch_buffer_size (int): the buffer size for micro batch. Normally, it should be the same as the number of pipeline stages.
"""
def __init__(
self,
stage: int,
micro_batch_size: int,
micro_batch_buffer_size: int,
max_input_len: int,
max_output_len: int,
cache_manager_list: MemoryManager,
):
self.stage = stage
self.micro_batch_size = micro_batch_size
self.buffer_size = micro_batch_buffer_size
self.max_input_len = max_input_len
self.max_output_len = max_output_len
self.cache_manager_list = cache_manager_list
self.mb_descrption_buffer = {}
self.new_tokens_buffer = {}
self.idx = 0
def add_descrption(self, inputs_dict: Dict[str, torch.Tensor]):
if self.stage == 0:
self.mb_descrption_buffer[self.idx] = HeadMicroBatchDescription(
inputs_dict, self.max_input_len, self.max_output_len, self.cache_manager_list[self.idx]
)
else:
self.mb_descrption_buffer[self.idx] = BodyMicroBatchDescription(
inputs_dict, self.max_input_len, self.max_output_len, self.cache_manager_list[self.idx]
)
def step(self, new_token: torch.Tensor = None):
"""
Update the state if microbatch manager, 2 conditions.
1. For first stage in PREFILL, receive inputs and outputs, `_add_descrption` will save its inputs.
2. For other conditon, only receive the output of previous stage, and update the descrption.
Args:
inputs_dict (Dict[str, torch.Tensor]): the inputs of current stage. The key should have `input_ids` and `attention_mask`.
output_dict (Dict[str, torch.Tensor]): the outputs of previous stage. The key should have `hidden_states` and `past_key_values`.
new_token (torch.Tensor): the new token generated by current stage.
"""
# Add descrption first if the descrption is None
self.cur_descrption.update(new_token)
return self.cur_state
def export_new_tokens(self):
new_tokens_list = []
for i in self.mb_descrption_buffer.values():
new_tokens_list.extend(i.new_tokens.tolist())
return new_tokens_list
def is_micro_batch_done(self):
if len(self.mb_descrption_buffer) == 0:
return False
for mb in self.mb_descrption_buffer.values():
if mb.state != Status.DONE:
return False
return True
def clear(self):
self.mb_descrption_buffer.clear()
for cache in self.cache_manager_list:
cache.free_all()
def next(self):
self.idx = (self.idx + 1) % self.buffer_size
def _remove_descrption(self):
self.mb_descrption_buffer.pop(self.idx)
@property
def cur_descrption(self) -> MicroBatchDescription:
return self.mb_descrption_buffer.get(self.idx)
@property
def cur_infer_state(self):
if self.cur_descrption is None:
return None
return self.cur_descrption.infer_state
@property
def cur_state(self):
"""
Return the state of current micro batch, when current descrption is None, the state is PREFILL
"""
if self.cur_descrption is None:
return Status.PREFILL
return self.cur_descrption.state