ColossalAI/colossalai/inference/manager.py

297 lines
11 KiB
Python

# Adapted from https://github.com/ModelTC/lightllm
import time
from typing import List
from .dynamic_batching.get_tokenizer import get_tokenizer
from .dynamic_batching.infer_batch import InferBatch
from .dynamic_batching.io_struct import Batch, Req
from .dynamic_batching.req_queue import ReqQueue
from .dynamic_batching.sampling_params import SamplingParams
from .dynamic_batching.stats import Stats
from .tensor_parallel import TPInferEngine
class DynamicBatchManager:
def __init__(
self,
tp_engine: TPInferEngine,
max_total_token_num,
batch_max_tokens,
model,
tokenizer=None,
eos_id=None,
log_stats=True,
log_stats_interval=10,
running_batch: Batch = None,
waiting_req_list: List = [],
):
"""
Args: tp_engine : The tp engine that dynamic batch manager hold, defined before dynamic batch manager
max_total_token_num : max_total_token_num for memory manager, default to: max batch size * (max input len + max output len)
batch_max_tokens : max tokens of one batch, default to (max input + output len) * num_requests
running_max_req_size : max request size of running batch, equals to MAX_BATCH_SIZE of tp engine
eos_id : The end token of a seq
model: the model weight dir path, the app will load config, weights and tokenizer from this dir
log_stats : whether to log stats
log_stats_interval : log stats interval
running_batch : running batch
waiting_req_list : list of waiting requests, initialized before dynamic batch manager
"""
self.engine = tp_engine
self.max_total_token_num = max_total_token_num
running_max_req_size = self.engine.max_batch_size if self.engine is not None else 2
self.req_queue = ReqQueue(max_total_token_num, batch_max_tokens, running_max_req_size, waiting_req_list)
# all the inputs should be put into req_queue: waiting req list
assert max_total_token_num >= self.engine.max_batch_size * (
self.engine.max_input_len + self.engine.max_output_len
), "max_total_token_num should be greater than max_batch_size * (max_input_len+max_output_len)"
assert (
batch_max_tokens >= self.engine.max_input_len + self.engine.max_output_len
), "batch_max_tokens should be greater than (max_input_len+max_output_len)"
self.running_batch: Batch = running_batch
self.eos_id = eos_id
self.has_wait_tokens = 0
self.max_wait_tokens = 10
self.model = model
self.stats_tool = Stats(log_stats, log_stats_interval)
self.mem_usage_interval = log_stats_interval * 2
self.tokenizer = get_tokenizer(tokenizer_name=self.model) if tokenizer is None else tokenizer
if self.eos_id == None:
self.eos_id = self.tokenizer.eos_token_id
def add_req(self, request_id: str, prompt_ids: List[int], sampling_params: SamplingParams, prompts: str = ""):
"""
Add new request to req queue, during initialization all requests are held in waiting list.
"""
sampling_params.max_new_tokens = (
self.engine.max_output_len
if sampling_params.max_new_tokens > self.engine.max_output_len
else sampling_params.max_new_tokens
)
req = Req(request_id, prompt_ids, sampling_params, prompts)
self.req_queue.append(req)
return
def add_input(self, request_id, prompts, sampling_params):
"""
Encode and Add new input to req queue. support one sequence input for now.
"""
prompt_ids = self.tokenizer.encode(prompts)
prompt_len = len(prompt_ids)
if prompt_len > self.engine.max_input_len:
raise ValueError(f"the input prompt token len {prompt_len} is too long > {self.engine.max_input_len}")
sampling_params.stop_sentences_to_token_ids(self.tokenizer)
self.add_req(request_id, prompt_ids, sampling_params, prompts)
return
def abort(self, request_id):
if self.running_batch is not None:
for req in self.running_batch.reqs:
if req.request_id == request_id:
req.has_generate_finished = True
req.aborted = True
for req in self.req_queue.waiting_req_list:
if req.request_id == request_id:
req.has_generate_finished = True
req.aborted = True
return
def loop_for_fwd(self):
"""
The main loop for a dynamic batching process.
"""
counter_count = 0
# self.running_batch is not None or self.req_queue.waiting_req_list
while self.running_batch is not None or self.req_queue.waiting_req_list:
yield from self._step()
counter_count += 1
if self.running_batch is not None:
if counter_count % self.mem_usage_interval == 0:
print(
"current batch size:",
len(self.running_batch.reqs),
"token used ratio:",
self.running_batch.calcu_used_tokens() / self.max_total_token_num,
)
self.stats_tool.print_stats()
if self.running_batch is None:
time.sleep(0.1) # 10ms
def _step(self):
"""
Logic for handling requests
"""
if self.running_batch is None:
new_batch = self.req_queue.generate_new_batch(self.running_batch)
if new_batch is not None:
self.stats_tool.count_prompt_tokens(new_batch)
self.running_batch = new_batch
yield from self._prefill_batch(self.running_batch)
self._filter_runing_batch()
self.has_wait_tokens = 0
return
if self.has_wait_tokens < self.max_wait_tokens:
self.stats_tool.count_output_tokens(self.running_batch)
yield from self._decode_batch(self.running_batch)
self._filter_runing_batch()
self.has_wait_tokens += 1
return
else:
new_mini_batch = self.req_queue.generate_new_batch(self.running_batch)
if new_mini_batch is not None:
self.stats_tool.count_prompt_tokens(new_mini_batch)
yield from self._prefill_batch(new_mini_batch)
if not new_mini_batch.is_clear():
self._merge_batch(self.running_batch, new_mini_batch)
self.running_batch.merge(new_mini_batch)
self.has_wait_tokens = 0
else:
self.stats_tool.count_output_tokens(self.running_batch)
yield from self._decode_batch(self.running_batch)
self._filter_runing_batch()
self.has_wait_tokens += 1
return
def _init_batch(self, batch: Batch, dtype="fp16"):
reqs = [r.to_rpc_obj() for r in batch.reqs]
batch_id = batch.batch_id
import torch
if dtype == "fp16":
dtype = torch.float16
else:
assert False, "error dtype"
batch_data = InferBatch.init_batch(
batch_id,
reqs,
dtype,
torch.cuda.current_device(),
self.engine.cache_manager,
self.engine.model.config.vocab_size,
self.engine.max_input_len + self.engine.max_output_len,
)
self.engine.cache[batch_id] = batch_data
def _prefill_batch(self, batch):
"""
For all batches, no matter it is a new batch or a mini batch, we need to do prefill first.
"""
self._init_batch(batch)
# TODO: figure out if cache and batch id is needed
ans = self.engine._prefill_batch(batch.batch_id)
req_to_out_token_id = ans
self._add_token_id_to_req(batch, req_to_out_token_id)
has_new_finished_req = batch.mark_finished_req(self.eos_id, self.engine.max_output_len)
yield from self._handle_finish_req(batch, has_new_finished_req)
# delete finished reqs
def _decode_batch(self, batch: Batch):
"""
Decoding process
"""
ans = self.engine._decode_batch(batch.batch_id)
req_to_out_token_id = ans
self._add_token_id_to_req(batch, req_to_out_token_id)
has_new_finished_req = batch.mark_finished_req(self.eos_id, self.engine.max_output_len)
yield from self._handle_finish_req(batch, has_new_finished_req)
def _filter_batch(self, batch: Batch):
batch_id = batch.batch_id
req_id_list = [r.request_id for r in batch.reqs]
batch = self.engine.cache.pop(batch_id)
filter_batch = batch.filter(req_id_list)
del batch
self.engine.cache[batch_id] = filter_batch
def _merge_batch(self, batch1, batch2):
"""
Merge new mini batch into running batch.
"""
batch1 = self.engine.cache.pop(batch1.batch_id)
batch2 = self.engine.cache.pop(batch2.batch_id)
m_batch = InferBatch.merge(batch1, batch2)
self.engine.cache[batch1.batch_id] = m_batch
del batch1
del batch2
def _remove_batch(self, batch):
"""
Remove finished batch.
"""
batch = self.engine.cache.pop(batch.batch_id)
batch.free_self()
del batch
def _handle_finish_req(self, batch: Batch, has_new_finished_req):
if has_new_finished_req:
finished_reqs = batch.filter_finished()
if batch.is_clear():
self._remove_batch(batch)
else:
self._filter_batch(batch)
yield from self._output_process(finished_reqs)
def _filter_runing_batch(self):
if self.running_batch is not None and self.running_batch.is_clear():
self.running_batch = None
def _add_token_id_to_req(self, batch: Batch, req_ans):
for req_id, (new_token_id, new_gen_metadata) in req_ans.items():
req = batch.id_to_reqs[req_id]
req.output_ids.append(new_token_id)
req.output_metadata_list.append(new_gen_metadata)
return
def _output_process(self, finished_reqs: List[Req]):
"""
Process the output of a batch.
"""
for req in finished_reqs:
output = self.tokenizer.decode(req.output_ids)
yield req.prompts + output
def clean_up(self):
# this logic should be implemented in the future.
pass
def generate(self, request_id, prompts, sampling_params):
"""
Generate the output of a request.
"""
self.add_input(request_id, prompts, sampling_params)
return self.loop_for_fwd()
def is_running(self):
return self.running_batch is not None or self.req_queue.waiting_req_list
def start_dynamic_batching(args, tp_engine, waiting_req_list):
try:
batch_manager = DynamicBatchManager(
tp_engine=tp_engine,
max_total_token_num=args.max_total_token_num,
batch_max_tokens=args.batch_max_tokens,
eos_id=args.eos_id,
model=args.model,
log_stats=not args.disable_log_stats,
log_stats_interval=args.log_stats_interval,
waiting_req_list=waiting_req_list,
)
except Exception:
raise Exception
return batch_manager