ColossalAI/applications/Chat/tests/test_experience.py

131 lines
5.0 KiB
Python

import copy
import os
import pytest
import torch
import torch.distributed as dist
from coati.experience_buffer import NaiveExperienceBuffer
from coati.experience_maker import NaiveExperienceMaker
from coati.models.base import RewardModel
from coati.models.gpt import GPTActor, GPTCritic
from coati.trainer.ppo import _set_default_generate_kwargs
from coati.trainer.strategies import DDPStrategy, GeminiStrategy
from coati.trainer.strategies.colossalai import LowLevelZeroStrategy
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from colossalai.testing import rerun_if_address_is_in_use, spawn
GPT_CONFIG = GPT2Config(n_embd=128, n_layer=4, n_head=4)
def get_data(batch_size: int, seq_len: int = 10) -> dict:
input_ids = torch.randint(0, 50257, (batch_size, seq_len), device="cuda")
attention_mask = torch.ones_like(input_ids)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def gather_and_equal(tensor: torch.Tensor) -> bool:
world_size = dist.get_world_size()
outputs = [torch.empty_like(tensor) for _ in range(world_size)]
dist.all_gather(outputs, tensor.contiguous())
for t in outputs[1:]:
if not torch.equal(outputs[0], t):
return False
return True
def make_and_consume_experience(strategy):
EXPERIENCE_BATCH_SIZE = 4
SAMPLE_BATCH_SIZE = 2
if strategy == "ddp":
strategy = DDPStrategy()
elif strategy == "colossalai-zero2":
strategy = LowLevelZeroStrategy()
elif strategy == "colossalai-gemini":
strategy = GeminiStrategy(placement_policy="static")
else:
raise ValueError(f'Unsupported strategy "{strategy}"')
with strategy.model_init_context():
actor = GPTActor(config=GPT_CONFIG).cuda()
critic = GPTCritic(config=GPT_CONFIG).cuda()
initial_model = GPTActor(config=GPT_CONFIG).cuda()
reward_model = RewardModel(model=copy.deepcopy(critic.model)).cuda()
actor, critic, initial_model, reward_model = strategy.prepare(actor, critic, initial_model, reward_model)
class MockTokenizer:
def __init__(self):
self.padding_side = "left"
self.eos_token_id = 0
self.pad_token_id = 0
tokenizer = MockTokenizer()
experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, tokenizer)
data_buffer = NaiveExperienceBuffer(SAMPLE_BATCH_SIZE, cpu_offload=False)
generate_kwargs = dict(do_sample=True, max_length=16)
generate_kwargs = _set_default_generate_kwargs(strategy, generate_kwargs, actor)
# experience of all ranks should be the same
for _ in range(2):
data = get_data(EXPERIENCE_BATCH_SIZE)
assert gather_and_equal(data["input_ids"])
assert gather_and_equal(data["attention_mask"])
experience = experience_maker.make_experience(**data, do_sample=True, max_length=16)
assert gather_and_equal(experience.sequences)
assert gather_and_equal(experience.action_log_probs)
assert gather_and_equal(experience.values)
assert gather_and_equal(experience.reward)
assert gather_and_equal(experience.advantages)
assert gather_and_equal(experience.action_mask)
assert gather_and_equal(experience.attention_mask)
data_buffer.append(experience)
# data buffer's data should be the same
buffer_size = torch.tensor([len(data_buffer)], device="cuda")
assert gather_and_equal(buffer_size)
for item in data_buffer.items:
assert gather_and_equal(item.sequences)
assert gather_and_equal(item.action_log_probs)
assert gather_and_equal(item.values)
assert gather_and_equal(item.reward)
assert gather_and_equal(item.advantages)
assert gather_and_equal(item.action_mask)
assert gather_and_equal(item.attention_mask)
# dataloader of each rank should have the same size and different batch
dataloader = strategy.setup_dataloader(data_buffer)
dataloader_size = torch.tensor([len(dataloader)], device="cuda")
assert gather_and_equal(dataloader_size)
for experience in dataloader:
assert not gather_and_equal(experience.sequences)
assert not gather_and_equal(experience.action_log_probs)
assert not gather_and_equal(experience.values)
assert not gather_and_equal(experience.reward)
assert not gather_and_equal(experience.advantages)
# action mask and attention mask may be same
def run_dist(rank, world_size, port, strategy):
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(port)
make_and_consume_experience(strategy)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize("strategy", ["ddp", "colossalai-zero2", "colossalai-gemini"])
@rerun_if_address_is_in_use()
def test_experience(world_size, strategy):
spawn(run_dist, world_size, strategy=strategy)
if __name__ == "__main__":
test_experience(2, "colossalai-zero2")