ColossalAI/tests/test_infer_ops/triton/test_token_attn_1.py

75 lines
2.4 KiB
Python

import math
import pytest
import torch
from packaging import version
try:
pass
from colossalai.kernel.triton.token_attention_kernel import token_attn_fwd_1
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
def torch_attn(xq, xk, bs, seqlen, num_head, head_dim):
xq = xq.view(bs, 1, num_head, head_dim)
xk = xk.view(bs, seqlen, num_head, head_dim)
keys = xk
xq = xq.transpose(1, 2)
keys = keys.transpose(1, 2)
scores = (
(torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(head_dim)).squeeze().transpose(0, 1).reshape(num_head, -1)
)
return scores
def torch_attn_1(xq, xk, seqlen, num_head, head_dim):
xq = xq.view(1, num_head, head_dim)
xk = xk.view(seqlen, num_head, head_dim)
logics = torch.sum(xq * xk, dim=-1, keepdim=False)
logics = logics.transpose(0, 1) / math.sqrt(head_dim)
return logics
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_attn_1():
pass
batch_size, seq_len, head_num, head_dim = 17, 1025, 12, 128
dtype = torch.float16
q = torch.empty((batch_size, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2)
k = torch.empty((batch_size * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2)
attn_out = torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda")
b_loc = torch.zeros((batch_size, seq_len), dtype=torch.int32, device="cuda")
kv_cache_start_loc = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
kv_cache_seq_len = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
for i in range(batch_size):
kv_cache_start_loc[i] = i * seq_len
kv_cache_seq_len[i] = seq_len
b_loc[i] = i * seq_len + torch.arange(0, seq_len, dtype=torch.int32, device="cuda")
token_attn_fwd_1(q, k, attn_out, b_loc, kv_cache_start_loc, kv_cache_seq_len, seq_len)
torch_out = torch_attn(q, k, batch_size, seq_len, head_num, head_dim).squeeze()
o = attn_out.squeeze()
print("max ", torch.max(torch.abs(torch_out - o)))
print("mean ", torch.mean(torch.abs(torch_out - o)))
assert torch.allclose(torch_out, o, atol=1e-2, rtol=0)
if __name__ == "__main__":
test_attn_1()