mirror of https://github.com/hpcaitech/ColossalAI
61 lines
1.8 KiB
Python
61 lines
1.8 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
import pytest
|
|
import torch
|
|
from torch import nn
|
|
|
|
try:
|
|
from vllm import layernorm_ops
|
|
|
|
rms_norm = layernorm_ops.rms_norm
|
|
HAS_VLLM_KERNERL = True
|
|
except:
|
|
print("please install vllm kernels to install rmsnorm")
|
|
print("install vllm from https://github.com/vllm-project/vllm to accelerate your inference")
|
|
HAS_VLLM_KERNERL = False
|
|
|
|
|
|
class LlamaRMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
"""
|
|
LlamaRMSNorm is equivalent to T5LayerNorm
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
input_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
return self.weight * hidden_states.to(input_dtype)
|
|
|
|
|
|
def cuda_rmsnorm_forward(hidden_states, weight, variance_epsilon):
|
|
x = hidden_states
|
|
out = torch.empty_like(x)
|
|
rms_norm(
|
|
out,
|
|
x,
|
|
weight,
|
|
variance_epsilon,
|
|
)
|
|
return out
|
|
|
|
|
|
@pytest.mark.skipif(not HAS_VLLM_KERNERL, reason="You need to install llama supported cuda kernels to run this test")
|
|
def test_rmsnorm():
|
|
data = torch.randn((1024, 64), dtype=torch.float16, device="cuda")
|
|
hg_rms = LlamaRMSNorm(64)
|
|
hg_rms = hg_rms.half().cuda()
|
|
out_torch = hg_rms(data)
|
|
out_cuda = cuda_rmsnorm_forward(data, hg_rms.weight.data, hg_rms.variance_epsilon)
|
|
|
|
check = torch.allclose(out_torch.cpu(), out_cuda.cpu(), rtol=1e-3, atol=1e-5)
|
|
assert check is True, "cuda rmsnorm forward is not matched with torch rmsnorm forward"
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_rmsnorm()
|