ColossalAI/tests/test_infer_ops/cuda/test_vllm_rmsnorm.py

61 lines
1.8 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import pytest
import torch
from torch import nn
try:
from vllm import layernorm_ops
rms_norm = layernorm_ops.rms_norm
HAS_VLLM_KERNERL = True
except:
print("please install vllm kernels to install rmsnorm")
print("install vllm from https://github.com/vllm-project/vllm to accelerate your inference")
HAS_VLLM_KERNERL = False
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def cuda_rmsnorm_forward(hidden_states, weight, variance_epsilon):
x = hidden_states
out = torch.empty_like(x)
rms_norm(
out,
x,
weight,
variance_epsilon,
)
return out
@pytest.mark.skipif(not HAS_VLLM_KERNERL, reason="You need to install llama supported cuda kernels to run this test")
def test_rmsnorm():
data = torch.randn((1024, 64), dtype=torch.float16, device="cuda")
hg_rms = LlamaRMSNorm(64)
hg_rms = hg_rms.half().cuda()
out_torch = hg_rms(data)
out_cuda = cuda_rmsnorm_forward(data, hg_rms.weight.data, hg_rms.variance_epsilon)
check = torch.allclose(out_torch.cpu(), out_cuda.cpu(), rtol=1e-3, atol=1e-5)
assert check is True, "cuda rmsnorm forward is not matched with torch rmsnorm forward"
if __name__ == "__main__":
test_rmsnorm()