ColossalAI/colossalai/legacy/utils/memory.py

181 lines
6.2 KiB
Python

import gc
from collections import namedtuple
import psutil
import torch
import torch.distributed as dist
from packaging import version
from colossalai.legacy.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.utils import get_current_device
_GLOBAL_CUDA_MEM_FRACTION = 1.0
_GLOBAL_CPU_MEM_CAPACITY = -1
def _bytes_to_MB(val, decimal=2):
"""A byte-to-Megabyte converter, default using binary notation.
:param val: X bytes to convert
:return: X' MB
"""
return round(val / (1024 * 1024), decimal)
# copy from PatrickStar
def _get_cpu_memory_info():
ps_mem_info = namedtuple("ps_mem_info", ["total", "free", "cached", "buffers", "used"])
try:
# psutil reads the memory info from /proc/memory_info,
# which results in returning the host memory instead of
# that of container.
# Here we try to read the container memory with method in:
# https://stackoverflow.com/a/46213331/5163915
mems = {}
with open("/sys/fs/cgroup/memory/memory.meminfo", "rb") as f:
for line in f:
fields = line.split()
mems[fields[0]] = int(fields[1]) * 1024
total = mems[b"MemTotal:"]
free = mems[b"MemFree:"]
cached = mems[b"Cached:"]
buffers = mems[b"Buffers:"]
used = total - free - cached - buffers
if used < 0:
used = total - free
mem_info = ps_mem_info(total=total, free=free, cached=cached, buffers=buffers, used=used)
except FileNotFoundError:
mems = psutil.virtual_memory()
mem_info = ps_mem_info(
total=mems.total,
free=mems.free,
cached=mems.cached,
buffers=mems.buffers,
used=mems.used,
)
return mem_info
def report_memory_usage(message, logger=None, report_cpu=False):
"""Calculate and print RAM usage (in GB)
Args:
message (str): A prefix message to add in the log.
logger (:class:`colossalai.logging.DistributedLogger`): The logger used to record memory information.
report_cpu (bool, optional): Whether to report CPU memory.
Raises:
EnvironmentError: Raise error if no distributed environment has been initialized.
"""
if not dist.is_initialized():
raise EnvironmentError("No distributed environment is initialized")
gpu_allocated = _bytes_to_MB(torch.cuda.memory_allocated())
gpu_max_allocated = _bytes_to_MB(torch.cuda.max_memory_allocated())
gpu_cached = _bytes_to_MB(torch.cuda.memory_reserved())
gpu_max_cached = _bytes_to_MB(torch.cuda.max_memory_reserved())
full_log = (
f"{message}: GPU: allocated {gpu_allocated} MB, max allocated {gpu_max_allocated} MB, "
+ f"cached: {gpu_cached} MB, max cached: {gpu_max_cached} MB"
)
if report_cpu:
# python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports
gc.collect()
vm_stats = psutil.virtual_memory()
vm_used = _bytes_to_MB(vm_stats.total - vm_stats.available)
full_log += f", CPU Virtual Memory: used = {vm_used} MB, percent = {vm_stats.percent}%"
if logger is None:
logger = get_dist_logger()
logger.info(full_log)
# get the peak memory to report correct data, so reset the counter for the next call
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
torch.cuda.reset_peak_memory_stats()
def colo_device_memory_capacity(device: torch.device) -> int:
"""
Get the capacity of the memory of the device
Args:
device (torch.device): a device
Returns:
int: size in byte
"""
assert isinstance(device, torch.device)
if device.type == "cpu":
# In the context of 1-CPU-N-GPU, the memory capacity of the current process is 1/N overall CPU memory.
return colo_get_cpu_memory_capacity() / gpc.num_processes_on_current_node
if device.type == "cuda":
return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION
def colo_device_memory_used(device: torch.device) -> int:
"""
Get the device memory on device belonging to the current process.
Args:
device (torch.device): a device
Returns:
int: memory size in bytes
"""
if device.type == "cpu":
mem_info = _get_cpu_memory_info()
# In the context of 1-CPU-N-GPU, the memory usage of the current process is 1/N CPU memory used.
# Each process consumes the same amount of memory.
ret = mem_info.used / gpc.num_processes_on_current_node
return ret
elif device.type == "cuda":
ret: int = torch.cuda.memory_allocated(device)
# get the peak memory to report correct data, so reset the counter for the next call
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
torch.cuda.reset_peak_memory_stats(device)
return ret
def colo_set_process_memory_fraction(ratio: float) -> None:
"""colo_set_process_memory_fraction
set how much cuda memory used on the gpu belonging to the current process.
Args:
ratio (float): a ratio between 0. ~ 1.
"""
if version.parse(torch.__version__) < version.parse("1.8"):
logger = get_dist_logger("colo_set_process_memory_fraction")
logger.warning("colo_set_process_memory_fraction failed because torch version is less than 1.8")
return
global _GLOBAL_CUDA_MEM_FRACTION
_GLOBAL_CUDA_MEM_FRACTION = ratio
torch.cuda.set_per_process_memory_fraction(_GLOBAL_CUDA_MEM_FRACTION, get_current_device())
def colo_set_cpu_memory_capacity(size: int) -> None:
global _GLOBAL_CPU_MEM_CAPACITY
mem_info = _get_cpu_memory_info()
total_size = mem_info.total
if size <= total_size:
_GLOBAL_CPU_MEM_CAPACITY = size
else:
_GLOBAL_CPU_MEM_CAPACITY = total_size
def colo_get_cpu_memory_capacity() -> int:
"""
Get the cpu memory capacity. We may not use all of it.
Returns:
int: _description_
"""
global _GLOBAL_CPU_MEM_CAPACITY
if _GLOBAL_CPU_MEM_CAPACITY == -1:
mem_info = _get_cpu_memory_info()
return mem_info.total
else:
return _GLOBAL_CPU_MEM_CAPACITY