mirror of https://github.com/hpcaitech/ColossalAI
41 lines
1.4 KiB
Python
41 lines
1.4 KiB
Python
import torch.nn as nn
|
|
from torch import Tensor
|
|
|
|
from ..parallel_2d._operation import split_batch_2d
|
|
from ..parallel_2p5d._operation import split_batch_2p5d
|
|
from ..parallel_3d._operation import split_batch_3d
|
|
from ..utils import get_tensor_parallel_mode
|
|
|
|
_parallel_split_batch = {"2d": split_batch_2d, "2.5d": split_batch_2p5d, "3d": split_batch_3d}
|
|
|
|
|
|
def partition_batch(input_) -> Tensor:
|
|
tensor_parallel_mode = get_tensor_parallel_mode()
|
|
if tensor_parallel_mode in _parallel_split_batch:
|
|
if isinstance(input_, dict):
|
|
return {k: _parallel_split_batch[tensor_parallel_mode](v) for k, v in input_.items()}
|
|
else:
|
|
return _parallel_split_batch[tensor_parallel_mode](input_)
|
|
else:
|
|
return input_
|
|
|
|
|
|
class ColossalaiModule(nn.Module):
|
|
def __init__(self, module: nn.Module, **kwargs):
|
|
super().__init__()
|
|
self.module = module
|
|
for k, v in kwargs.items():
|
|
setattr(self, k, v)
|
|
|
|
def __getattr__(self, name: str):
|
|
if name == "module":
|
|
return super().__getattr__(name)
|
|
elif hasattr(self.module, name):
|
|
return getattr(self.module, name)
|
|
elif name in self.__dict__:
|
|
return self.__dict__[name]
|
|
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, name))
|
|
|
|
def forward(self, *args):
|
|
return self.module(*args)
|