mirror of https://github.com/hpcaitech/ColossalAI
133 lines
4.3 KiB
Python
133 lines
4.3 KiB
Python
from copy import deepcopy
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
|
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
|
|
|
|
import colossalai
|
|
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
|
from colossalai.shardformer.modeling.mixtral import EPMixtralSparseMoeBlock
|
|
from colossalai.tensor.moe_tensor.api import is_moe_tensor
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
from colossalai.testing.random import seed_all
|
|
from colossalai.zero import LowLevelZeroOptimizer
|
|
from tests.test_moe.moe_utils import loose_close
|
|
|
|
tokens, n_experts = 7, 4
|
|
hidden_size = 8
|
|
top_k = 2
|
|
|
|
|
|
def split_grad(grad, world_size):
|
|
with torch.no_grad():
|
|
grad = grad.clone().detach().flatten()
|
|
padding_size = (world_size - grad.numel() % world_size) % world_size
|
|
if padding_size > 0:
|
|
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
|
splited_grad = grad.split(grad.numel() // world_size)
|
|
return splited_grad
|
|
|
|
|
|
@parameterize("dtype", [torch.float16, torch.bfloat16])
|
|
@parameterize("master_weights", [True, False])
|
|
@parameterize("stage", [1, 2])
|
|
def run_zero_with_original_model(world_size, master_weights: bool, dtype: torch.dtype, stage: int):
|
|
rank = torch.distributed.get_rank()
|
|
torch.cuda.set_device(dist.get_rank())
|
|
plugin = MoeHybridParallelPlugin(
|
|
tp_size=1,
|
|
pp_size=1,
|
|
ep_size=dist.get_world_size() // 2,
|
|
)
|
|
|
|
seed_all(10086)
|
|
config = MixtralConfig(
|
|
hidden_size=hidden_size,
|
|
intermediate_size=hidden_size * 2,
|
|
num_local_experts=n_experts,
|
|
num_experts_per_tok=top_k,
|
|
)
|
|
|
|
orig_model = MixtralSparseMoeBlock(config).to(dtype).cuda()
|
|
|
|
ori_model = DDP(orig_model.cuda(), static_graph=True).cuda()
|
|
|
|
zero_model = deepcopy(orig_model).to(dtype)
|
|
zero_model = EPMixtralSparseMoeBlock.from_native_module(zero_model, ep_group=plugin.ep_group)
|
|
|
|
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
|
pg_param_list = {plugin.global_dp_group: [], plugin.moe_dp_group: []}
|
|
for p in zero_model.parameters():
|
|
if is_moe_tensor(p):
|
|
pg_param_list[plugin.moe_dp_group].append(p)
|
|
else:
|
|
pg_param_list[plugin.global_dp_group].append(p)
|
|
|
|
zero_optimizer = LowLevelZeroOptimizer(
|
|
zero_optimizer,
|
|
pg_to_param_list=pg_param_list,
|
|
master_weights=master_weights,
|
|
initial_scale=1,
|
|
overlap_communication=False,
|
|
partition_grad=True,
|
|
)
|
|
|
|
ori_optimizer = torch.optim.SGD(ori_model.parameters(), lr=1)
|
|
|
|
# create
|
|
seed_all(1453 + rank)
|
|
|
|
for _ in range(2):
|
|
# zero-dp forward
|
|
input_data = torch.rand(1, tokens, hidden_size).cuda()
|
|
zero_output, zero_logits = zero_model(input_data.to(dtype))
|
|
|
|
# torch-ddp forward
|
|
ori_output, ori_logits = ori_model(input_data.to(dtype))
|
|
loose_close(zero_output, ori_output, dtype=dtype)
|
|
|
|
# zero-dp backward
|
|
zero_optimizer.backward(zero_output.mean().float())
|
|
|
|
# torch-ddp backward
|
|
ori_output.mean().backward()
|
|
|
|
# check grad
|
|
name_to_p = {n: p for n, p in ori_model.module.named_parameters()}
|
|
for n, p in zero_model.named_parameters():
|
|
zero_grad = zero_optimizer.get_param_grad(p)
|
|
if name_to_p[n].grad is None:
|
|
assert zero_grad is None
|
|
continue
|
|
|
|
loose_close(zero_grad, name_to_p[n].grad, dtype=dtype)
|
|
|
|
# zero-dp step
|
|
zero_optimizer.step()
|
|
|
|
# original model step
|
|
ori_optimizer.step()
|
|
|
|
# check updated param
|
|
for n, p in zero_model.named_parameters():
|
|
loose_close(p.data, name_to_p[n].data, dtype=dtype)
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
run_zero_with_original_model(world_size=world_size)
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize("world_size", [2, 4])
|
|
@rerun_if_address_is_in_use()
|
|
def test_moe_zero_model(world_size):
|
|
spawn(run_dist, world_size)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_moe_zero_model(world_size=4)
|