ColossalAI/tests/test_moe/test_moe_zero_fwd_bwd_optim.py

133 lines
4.3 KiB
Python

from copy import deepcopy
import pytest
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
import colossalai
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.shardformer.modeling.mixtral import EPMixtralSparseMoeBlock
from colossalai.tensor.moe_tensor.api import is_moe_tensor
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from colossalai.zero import LowLevelZeroOptimizer
from tests.test_moe.moe_utils import loose_close
tokens, n_experts = 7, 4
hidden_size = 8
top_k = 2
def split_grad(grad, world_size):
with torch.no_grad():
grad = grad.clone().detach().flatten()
padding_size = (world_size - grad.numel() % world_size) % world_size
if padding_size > 0:
grad = torch.nn.functional.pad(grad, [0, padding_size])
splited_grad = grad.split(grad.numel() // world_size)
return splited_grad
@parameterize("dtype", [torch.float16, torch.bfloat16])
@parameterize("master_weights", [True, False])
@parameterize("stage", [1, 2])
def run_zero_with_original_model(world_size, master_weights: bool, dtype: torch.dtype, stage: int):
rank = torch.distributed.get_rank()
torch.cuda.set_device(dist.get_rank())
plugin = MoeHybridParallelPlugin(
tp_size=1,
pp_size=1,
ep_size=dist.get_world_size() // 2,
)
seed_all(10086)
config = MixtralConfig(
hidden_size=hidden_size,
intermediate_size=hidden_size * 2,
num_local_experts=n_experts,
num_experts_per_tok=top_k,
)
orig_model = MixtralSparseMoeBlock(config).to(dtype).cuda()
ori_model = DDP(orig_model.cuda(), static_graph=True).cuda()
zero_model = deepcopy(orig_model).to(dtype)
zero_model = EPMixtralSparseMoeBlock.from_native_module(zero_model, ep_group=plugin.ep_group)
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
pg_param_list = {plugin.global_dp_group: [], plugin.moe_dp_group: []}
for p in zero_model.parameters():
if is_moe_tensor(p):
pg_param_list[plugin.moe_dp_group].append(p)
else:
pg_param_list[plugin.global_dp_group].append(p)
zero_optimizer = LowLevelZeroOptimizer(
zero_optimizer,
pg_to_param_list=pg_param_list,
master_weights=master_weights,
initial_scale=1,
overlap_communication=False,
partition_grad=True,
)
ori_optimizer = torch.optim.SGD(ori_model.parameters(), lr=1)
# create
seed_all(1453 + rank)
for _ in range(2):
# zero-dp forward
input_data = torch.rand(1, tokens, hidden_size).cuda()
zero_output, zero_logits = zero_model(input_data.to(dtype))
# torch-ddp forward
ori_output, ori_logits = ori_model(input_data.to(dtype))
loose_close(zero_output, ori_output, dtype=dtype)
# zero-dp backward
zero_optimizer.backward(zero_output.mean().float())
# torch-ddp backward
ori_output.mean().backward()
# check grad
name_to_p = {n: p for n, p in ori_model.module.named_parameters()}
for n, p in zero_model.named_parameters():
zero_grad = zero_optimizer.get_param_grad(p)
if name_to_p[n].grad is None:
assert zero_grad is None
continue
loose_close(zero_grad, name_to_p[n].grad, dtype=dtype)
# zero-dp step
zero_optimizer.step()
# original model step
ori_optimizer.step()
# check updated param
for n, p in zero_model.named_parameters():
loose_close(p.data, name_to_p[n].data, dtype=dtype)
def run_dist(rank, world_size, port):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_zero_with_original_model(world_size=world_size)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4])
@rerun_if_address_is_in_use()
def test_moe_zero_model(world_size):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_moe_zero_model(world_size=4)