mirror of https://github.com/hpcaitech/ColossalAI
156 lines
5.7 KiB
Python
156 lines
5.7 KiB
Python
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.distributed import ProcessGroup
|
|
from torch.testing import assert_close
|
|
|
|
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
|
from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler
|
|
from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce
|
|
from colossalai.legacy.registry import GRADIENT_HANDLER
|
|
from colossalai.moe.manager import MOE_MANAGER
|
|
from colossalai.moe.utils import get_moe_epsize_param_dict
|
|
|
|
# from colossalai.shardformer.layer.moe import SparseMLP
|
|
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_size, set_moe_tensor_ep_group
|
|
|
|
|
|
def delete_moe_info(model):
|
|
for _, param in model.named_parameters():
|
|
if hasattr(param, "ep_group"):
|
|
delattr(param, "ep_group")
|
|
|
|
|
|
class MoeModel(nn.Module):
|
|
def __init__(self, ep_group: ProcessGroup = None):
|
|
super().__init__()
|
|
self.test_embed = nn.Linear(4, 16, bias=False)
|
|
self.w1 = torch.nn.Parameter(torch.randn(16, 8))
|
|
if ep_group:
|
|
set_moe_tensor_ep_group(self.w1, ep_group)
|
|
|
|
def forward(self, x):
|
|
x = self.test_embed(x)
|
|
x = torch.matmul(x, self.w1)
|
|
|
|
return x
|
|
|
|
|
|
@GRADIENT_HANDLER.register_module
|
|
class MoeGradientHandler(BaseGradientHandler):
|
|
"""A helper class to handle all-reduce operations in a data parallel group and
|
|
moe model parallel. A all-reduce collective communication will be operated in
|
|
:func:`handle_gradient` among a data parallel group.
|
|
For better performance, it bucketizes the gradients of all parameters that are
|
|
the same type to improve the efficiency of communication.
|
|
|
|
Args:
|
|
model (Module): Model where the gradients accumulate.
|
|
optimizer (Optimizer): Optimizer for updating the parameters.
|
|
"""
|
|
|
|
def __init__(self, model, optimizer=None):
|
|
super().__init__(model, optimizer)
|
|
|
|
def handle_gradient(self):
|
|
"""A method running an all-reduce operation in a data parallel group.
|
|
Then running an all-reduce operation for all parameters in experts
|
|
across moe model parallel group
|
|
"""
|
|
if dist.get_world_size() > 1:
|
|
epsize_param_dict = get_moe_epsize_param_dict(self._model)
|
|
|
|
# epsize is 1, indicating the params are replicated among processes in data parallelism
|
|
# use the ParallelMode.DATA to get data parallel group
|
|
# reduce gradients for all parameters in data parallelism
|
|
if 1 in epsize_param_dict:
|
|
bucket_allreduce(param_list=epsize_param_dict[1])
|
|
|
|
for ep_size in epsize_param_dict:
|
|
if ep_size != 1 and ep_size != MOE_MANAGER.world_size:
|
|
bucket_allreduce(
|
|
param_list=epsize_param_dict[ep_size], group=MOE_MANAGER.parallel_info_dict[ep_size].dp_group
|
|
)
|
|
|
|
|
|
def assert_not_equal_in_group(tensor, process_group=None):
|
|
# all gather tensors from different ranks
|
|
world_size = dist.get_world_size(process_group)
|
|
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
|
|
dist.all_gather(tensor_list, tensor, group=process_group)
|
|
|
|
# check if they are equal one by one
|
|
for i in range(world_size - 1):
|
|
a = tensor_list[i]
|
|
b = tensor_list[i + 1]
|
|
assert not torch.allclose(a, b), (
|
|
f"expected tensors on rank {i} and {i + 1} not to be equal " f"but they are, {a} vs {b}"
|
|
)
|
|
|
|
|
|
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
|
|
model.train()
|
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
if criterion:
|
|
y = model(data)
|
|
loss = criterion(y, label)
|
|
else:
|
|
loss = model(data, label)
|
|
loss = loss.float()
|
|
|
|
if isinstance(model, LowLevelZeroModel):
|
|
optimizer.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
return y
|
|
|
|
|
|
def sync_local_from_ep(local_model, ep_model, assert_grad_flag: bool = False) -> None:
|
|
"""Sync the parameters of tp model from ep model
|
|
|
|
Args:
|
|
local_model (MoeModule)
|
|
ep_model (MoeModule)
|
|
"""
|
|
for (local_name, local_param), (ep_name, ep_param) in zip(
|
|
local_model.named_parameters(), ep_model.named_parameters()
|
|
):
|
|
if "experts" not in local_name:
|
|
if assert_grad_flag:
|
|
assert torch.allclose(local_param, ep_param), f"local_param: {local_param}, ep_param: {ep_param}"
|
|
assert torch.allclose(local_param.grad, ep_param.grad)
|
|
else:
|
|
local_param.data.copy_(ep_param.data)
|
|
continue
|
|
|
|
# gather param from ep model
|
|
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
|
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
|
|
all_param = torch.cat(param_list, dim=0)
|
|
if assert_grad_flag:
|
|
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
|
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
|
|
all_grad = torch.cat(grad_list, dim=0)
|
|
|
|
if assert_grad_flag:
|
|
assert torch.allclose(local_param, all_param)
|
|
assert torch.allclose(local_param.grad, all_grad)
|
|
else:
|
|
local_param.data.copy_(all_param.data)
|
|
|
|
|
|
def loose_close(a, b, dtype: torch.dtype = torch.float32):
|
|
rtol = None
|
|
atol = None
|
|
if dtype is torch.float16:
|
|
rtol = 5e-2
|
|
atol = 5e-4
|
|
elif dtype is torch.bfloat16:
|
|
rtol = 4e-3
|
|
atol = 4e-3
|
|
|
|
a = a.detach().to(dtype)
|
|
b = b.detach().to(dtype).to(a.device)
|
|
|
|
assert_close(a, b, rtol=rtol, atol=atol)
|