ColossalAI/colossalai/shardformer/policies/vit.py

275 lines
11 KiB
Python

import warnings
from typing import Callable, Dict, List, Union
import torch.nn as nn
import colossalai.shardformer.layer as col_nn
from colossalai.shardformer.layer import DropoutForReplicatedInput, Linear1D_Col
from ..modeling.jit import get_jit_fused_dropout_add_func
from ..modeling.vit import (
ViTForImageClassification_pipeline_forward,
ViTForMaskedImageModeling_pipeline_forward,
ViTModel_pipeline_forward,
get_jit_fused_vit_intermediate_forward,
get_jit_fused_vit_output_forward,
get_vit_flash_self_attention_forward,
)
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = ["ViTPolicy", "ViTModelPolicy", "ViTForImageClassificationPolicy", "ViTForMaskedImageModelingPolicy"]
class ViTPolicy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
self.enable_bias_gelu_fused = self.shard_config.enable_jit_fused and self.model.config.hidden_act == "gelu"
return self.model
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
from transformers.models.vit.modeling_vit import (
ViTEmbeddings,
ViTIntermediate,
ViTLayer,
ViTOutput,
ViTSelfAttention,
)
policy = {}
if self.shard_config.enable_sequence_parallelism:
self.shard_config.enable_sequence_parallelism = False
warnings.warn("Vit doesn't support sequence parallelism now, will ignore the sequence parallelism flag.")
if self.shard_config.enable_tensor_parallelism:
assert (
self.model.config.num_attention_heads % self.shard_config.tensor_parallel_size == 0
), f"The number of attention heads must be divisible by tensor parallel size."
policy[ViTEmbeddings] = ModulePolicyDescription(
attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=DropoutForReplicatedInput,
)
],
)
policy[ViTLayer] = ModulePolicyDescription(
attribute_replacement={
"attention.attention.num_attention_heads": self.model.config.num_attention_heads
// self.shard_config.tensor_parallel_size,
"attention.attention.all_head_size": self.model.config.hidden_size
// self.shard_config.tensor_parallel_size,
},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="attention.attention.query",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="attention.attention.key",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="attention.attention.value",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="attention.attention.dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="attention.output.dense",
target_module=col_nn.Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="attention.output.dropout",
target_module=col_nn.DropoutForReplicatedInput,
),
SubModuleReplacementDescription(
suffix="intermediate.dense",
target_module=col_nn.Linear1D_Col,
kwargs={
"skip_bias_add": self.enable_bias_gelu_fused,
},
),
SubModuleReplacementDescription(
suffix="output.dense",
target_module=col_nn.Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="output.dropout",
target_module=col_nn.DropoutForReplicatedInput,
),
],
)
if self.enable_bias_gelu_fused:
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_vit_intermediate_forward(),
},
policy=policy,
target_key=ViTIntermediate,
)
# use flash attention
if self.shard_config.enable_flash_attention:
self.append_or_create_method_replacement(
description={
"forward": get_vit_flash_self_attention_forward(),
},
policy=policy,
target_key=ViTSelfAttention,
)
# use jit fused operator
if self.shard_config.enable_jit_fused:
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_vit_output_forward(),
"dropout_add": get_jit_fused_dropout_add_func(),
},
policy=policy,
target_key=ViTOutput,
)
return policy
def new_model_class(self):
return None
def postprocess(self):
return self.model
def get_held_layers(self) -> List[nn.Module]:
"""Get pipeline layers for current stage."""
assert self.pipeline_stage_manager is not None, "pipeline_stage_manager is None"
if self.model.__class__.__name__ == "ViTModel":
module = self.model
else:
module = self.model.vit
stage_manager = self.pipeline_stage_manager
held_layers = []
layers_per_stage = stage_manager.distribute_layers(len(module.encoder.layer))
if stage_manager.is_first_stage():
held_layers.append(module.embeddings)
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
held_layers.extend(module.encoder.layer[start_idx:end_idx])
return held_layers
def set_pipeline_forward(self, model_cls: nn.Module, pipeline_forward: Callable, policy: Dict):
if self.pipeline_stage_manager:
stage_manager = self.pipeline_stage_manager
if self.model.__class__.__name__ == "ViTModel":
module = self.model
else:
module = self.model.vit
layers_per_stage = stage_manager.distribute_layers(len(module.encoder.layer))
stage_index = stage_manager.get_stage_index(layers_per_stage)
method_replacement = {"forward": pipeline_forward(stage_manager=stage_manager, stage_index=stage_index)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=model_cls
)
# ViTModel
class ViTModelPolicy(ViTPolicy):
def module_policy(self):
from transformers.models.vit.modeling_vit import ViTModel
policy = super().module_policy()
if self.shard_config.pipeline_stage_manager is not None:
self.set_pipeline_forward(model_cls=ViTModel, pipeline_forward=ViTModel_pipeline_forward, policy=policy)
return policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
assert self.pipeline_stage_manager is not None, "pipeline_stage_manager is None"
module = self.model
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(module.layernorm)
held_layers.append(module.pooler)
return held_layers
# ViTForImageClassification
class ViTForImageClassificationPolicy(ViTPolicy):
def module_policy(self):
from transformers.models.vit.modeling_vit import ViTForImageClassification, ViTModel
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
new_item = {
ViTForImageClassification: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="classifier", target_module=Linear1D_Col, kwargs=dict(gather_output=True)
)
]
)
}
policy.update(new_item)
if self.shard_config.pipeline_stage_manager is not None:
self.set_pipeline_forward(model_cls=ViTModel, pipeline_forward=ViTModel_pipeline_forward, policy=policy)
self.set_pipeline_forward(
model_cls=ViTForImageClassification,
pipeline_forward=ViTForImageClassification_pipeline_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
assert self.pipeline_stage_manager is not None, "pipeline_stage_manager is None"
module = self.model.vit
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(module.layernorm)
held_layers.append(self.model.classifier)
return held_layers
# ViTForMaskedImageModeling
class ViTForMaskedImageModelingPolicy(ViTPolicy):
def module_policy(self):
from transformers.models.vit.modeling_vit import ViTForMaskedImageModeling, ViTModel
policy = super().module_policy()
if self.shard_config.pipeline_stage_manager is not None:
self.set_pipeline_forward(model_cls=ViTModel, pipeline_forward=ViTModel_pipeline_forward, policy=policy)
self.set_pipeline_forward(
model_cls=ViTForMaskedImageModeling,
pipeline_forward=ViTForMaskedImageModeling_pipeline_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
assert self.pipeline_stage_manager is not None, "pipeline_stage_manager is None"
module = self.model.vit
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(module.layernorm)
held_layers.append(self.model.decoder)
return held_layers