ColossalAI/colossalai/shardformer/modeling/deepseek.py

430 lines
19 KiB
Python

from typing import List, Optional, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed import ProcessGroup
# from colossalai.tensor.moe_tensor.moe_info import MoeParallelInfo
from torch.nn import CrossEntropyLoss
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.utils import is_flash_attn_2_available, logging
from colossalai.lazy import LazyInitContext
from colossalai.moe._operation import MoeInGradScaler, MoeOutGradScaler, all_to_all_uneven
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.shard import ShardConfig
from colossalai.shardformer.shard.utils import set_tensors_to_none
# copied from modeling_deepseek.py
class AddAuxiliaryLoss(torch.autograd.Function):
"""
The trick function of adding auxiliary (aux) loss,
which includes the gradient of the aux loss during backpropagation.
"""
@staticmethod
def forward(ctx, x, loss):
assert loss.numel() == 1
ctx.dtype = loss.dtype
ctx.required_aux_loss = loss.requires_grad
return x
@staticmethod
def backward(ctx, grad_output):
grad_loss = None
if ctx.required_aux_loss:
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
return grad_output, grad_loss
class EPDeepseekMoE(nn.Module):
def __init__(self):
super(EPDeepseekMoE, self).__init__()
def setup_ep(self, ep_group: ProcessGroup):
ep_group = ep_group
self.ep_size = dist.get_world_size(ep_group) if ep_group is not None else 1
self.ep_rank = dist.get_rank(ep_group) if ep_group is not None else 0
self.num_experts = self.config.n_routed_experts
assert self.num_experts % self.ep_size == 0
self.ep_group = ep_group
self.num_experts_per_ep = self.num_experts // self.ep_size
self.expert_start_idx = self.ep_rank * self.num_experts_per_ep
held_experts = self.experts[self.expert_start_idx : self.expert_start_idx + self.num_experts_per_ep]
set_tensors_to_none(self.experts, exclude=set(held_experts))
for p in self.experts.parameters():
p.ep_group = ep_group
@staticmethod
def from_native_module(module: Union["DeepseekMoE", "DeepseekMLP"], *args, **kwargs) -> "EPDeepseekMoE":
LazyInitContext.materialize(module)
if module.__class__.__name__ == "DeepseekMLP":
return module
module.__class__ = EPDeepseekMoE
assert "ep_group" in kwargs, "You should pass ep_group in SubModuleReplacementDescription via shard_config!!"
module.setup_ep(kwargs["ep_group"])
return module
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
identity = hidden_states
orig_shape = hidden_states.shape
topk_experts_idx, topk_experts_weight, aux_loss = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) # [t0, t1, t2 ...]
hidden_states = hidden_states.repeat_interleave(
self.num_experts_per_tok, dim=0
) # after repeat_interleave: [t0 t0 t1 t1 t2 t2 ... ]
flat_topk_experts_idx = topk_experts_idx.view(-1) # [e0 e1 e2 ...]
# The elements of flat_topk_token_idx are token ids, which are arranged in ascending order of expert ids.
flat_topk_token_idx = flat_topk_experts_idx.argsort()
# Now we adjust the order of the hidden states, also in ascending order of expert id
dispatch_states = hidden_states[flat_topk_token_idx]
input_split_sizes = flat_topk_experts_idx.bincount(minlength=self.num_experts) # [n0, n1, n2, n3]
output_split_sizes = torch.zeros_like(input_split_sizes)
# [n0, n1, n2, n3] [m0, m1, m2, m3] -> [n0, n1, m0, m1] [n2, n3, m2, m3]
dist.all_to_all_single(output_split_sizes, input_split_sizes, group=self.ep_group)
input_split_list = input_split_sizes.view(self.ep_size, self.num_experts_per_ep).sum(dim=-1).tolist()
output_split_list = output_split_sizes.view(self.ep_size, self.num_experts_per_ep).sum(dim=-1).tolist()
output_states, _ = all_to_all_uneven(dispatch_states, input_split_list, output_split_list, self.ep_group)
output_states = MoeInGradScaler.apply(output_states, self.ep_size)
if output_states.size(0) > 0:
if self.num_experts_per_ep == 1:
expert = self.experts[self.expert_start_idx]
output_states = expert(output_states)
else:
output_states_splits = output_states.split(output_split_sizes.tolist())
output_states_list = []
for i, split_states in enumerate(output_states_splits):
if split_states.size(0) == 0: # no token routed to this experts
continue
expert = self.experts[self.expert_start_idx + i % self.num_experts_per_ep]
split_states = expert(split_states)
output_states_list.append(split_states)
output_states = torch.cat(output_states_list)
output_states = MoeOutGradScaler.apply(output_states, self.ep_size)
dispatch_states, _ = all_to_all_uneven(output_states, output_split_list, input_split_list, self.ep_group)
recover_token_idx = torch.empty_like(flat_topk_token_idx)
recover_token_idx[flat_topk_token_idx] = torch.arange(
flat_topk_token_idx.size(0), device=flat_topk_token_idx.device
)
output_hidden_states = dispatch_states[recover_token_idx] # t0 t0 t1 t1 t2 t2
output_hidden_states = output_hidden_states.view(-1, self.num_experts_per_tok, orig_shape[-1])
output_hidden_states = (output_hidden_states * topk_experts_weight[:, :, None]).sum(dim=-2) # (B*S, h)
output_hidden_states = output_hidden_states.view(*orig_shape)
output_hidden_states = AddAuxiliaryLoss.apply(output_hidden_states, aux_loss)
if self.config.n_shared_experts is not None:
output_hidden_states = output_hidden_states + self.shared_experts(identity)
return output_hidden_states
class DeepseekPipelineForwards:
"""
This class serves as a micro library for forward function substitution of Llama models
under pipeline setting.
"""
@staticmethod
def deepseek_model_forward(
self: "DeepseekModel",
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
logger = logging.get_logger(__name__)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if stage_manager.is_first_stage():
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
else:
input_shape = hidden_states.shape[:-1]
batch_size, seq_length = input_shape
device = hidden_states.device
seq_length_with_past = seq_length
past_key_values_length = 0
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
if use_cache:
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
use_cache = False
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
# embed positions, for the first stage, hidden_states is the input embeddings,
# for the other stages, hidden_states is the output of the previous stage
if is_flash_attn_2_available():
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
hidden_states,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
start_idx, end_idx = stage_index[0], stage_index[1]
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
output_attentions,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask,
position_ids,
past_key_value,
output_attentions,
use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if stage_manager.is_last_stage():
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if stage_manager.is_last_stage():
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
# always return dict for imediate stage
return {
"hidden_states": hidden_states,
}
@staticmethod
def deepseek_for_causal_lm_forward(
self: "DeepseekForCausalLM",
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MixtralForCausalLM
>>> model = DeepseekForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
logger = logging.get_logger(__name__)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = DeepseekPipelineForwards.deepseek_model_forward(
self.model,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
)
past_key_values = None
if stage_manager.is_last_stage():
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=None,
hidden_states=outputs[0],
attentions=None,
)
else:
out = {}
hidden_states = outputs.get("hidden_states")
out["hidden_states"] = hidden_states
return out