mirror of https://github.com/hpcaitech/ColossalAI
430 lines
19 KiB
Python
430 lines
19 KiB
Python
from typing import List, Optional, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.distributed import ProcessGroup
|
|
|
|
# from colossalai.tensor.moe_tensor.moe_info import MoeParallelInfo
|
|
from torch.nn import CrossEntropyLoss
|
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
from transformers.utils import is_flash_attn_2_available, logging
|
|
|
|
from colossalai.lazy import LazyInitContext
|
|
from colossalai.moe._operation import MoeInGradScaler, MoeOutGradScaler, all_to_all_uneven
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
from colossalai.shardformer.shard import ShardConfig
|
|
from colossalai.shardformer.shard.utils import set_tensors_to_none
|
|
|
|
|
|
# copied from modeling_deepseek.py
|
|
class AddAuxiliaryLoss(torch.autograd.Function):
|
|
"""
|
|
The trick function of adding auxiliary (aux) loss,
|
|
which includes the gradient of the aux loss during backpropagation.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, x, loss):
|
|
assert loss.numel() == 1
|
|
ctx.dtype = loss.dtype
|
|
ctx.required_aux_loss = loss.requires_grad
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
grad_loss = None
|
|
if ctx.required_aux_loss:
|
|
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
|
|
return grad_output, grad_loss
|
|
|
|
|
|
class EPDeepseekMoE(nn.Module):
|
|
def __init__(self):
|
|
super(EPDeepseekMoE, self).__init__()
|
|
|
|
def setup_ep(self, ep_group: ProcessGroup):
|
|
ep_group = ep_group
|
|
self.ep_size = dist.get_world_size(ep_group) if ep_group is not None else 1
|
|
self.ep_rank = dist.get_rank(ep_group) if ep_group is not None else 0
|
|
self.num_experts = self.config.n_routed_experts
|
|
assert self.num_experts % self.ep_size == 0
|
|
self.ep_group = ep_group
|
|
self.num_experts_per_ep = self.num_experts // self.ep_size
|
|
self.expert_start_idx = self.ep_rank * self.num_experts_per_ep
|
|
held_experts = self.experts[self.expert_start_idx : self.expert_start_idx + self.num_experts_per_ep]
|
|
set_tensors_to_none(self.experts, exclude=set(held_experts))
|
|
for p in self.experts.parameters():
|
|
p.ep_group = ep_group
|
|
|
|
@staticmethod
|
|
def from_native_module(module: Union["DeepseekMoE", "DeepseekMLP"], *args, **kwargs) -> "EPDeepseekMoE":
|
|
LazyInitContext.materialize(module)
|
|
if module.__class__.__name__ == "DeepseekMLP":
|
|
return module
|
|
module.__class__ = EPDeepseekMoE
|
|
assert "ep_group" in kwargs, "You should pass ep_group in SubModuleReplacementDescription via shard_config!!"
|
|
module.setup_ep(kwargs["ep_group"])
|
|
return module
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
identity = hidden_states
|
|
orig_shape = hidden_states.shape
|
|
|
|
topk_experts_idx, topk_experts_weight, aux_loss = self.gate(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) # [t0, t1, t2 ...]
|
|
hidden_states = hidden_states.repeat_interleave(
|
|
self.num_experts_per_tok, dim=0
|
|
) # after repeat_interleave: [t0 t0 t1 t1 t2 t2 ... ]
|
|
|
|
flat_topk_experts_idx = topk_experts_idx.view(-1) # [e0 e1 e2 ...]
|
|
# The elements of flat_topk_token_idx are token ids, which are arranged in ascending order of expert ids.
|
|
flat_topk_token_idx = flat_topk_experts_idx.argsort()
|
|
|
|
# Now we adjust the order of the hidden states, also in ascending order of expert id
|
|
dispatch_states = hidden_states[flat_topk_token_idx]
|
|
input_split_sizes = flat_topk_experts_idx.bincount(minlength=self.num_experts) # [n0, n1, n2, n3]
|
|
output_split_sizes = torch.zeros_like(input_split_sizes)
|
|
|
|
# [n0, n1, n2, n3] [m0, m1, m2, m3] -> [n0, n1, m0, m1] [n2, n3, m2, m3]
|
|
dist.all_to_all_single(output_split_sizes, input_split_sizes, group=self.ep_group)
|
|
|
|
input_split_list = input_split_sizes.view(self.ep_size, self.num_experts_per_ep).sum(dim=-1).tolist()
|
|
output_split_list = output_split_sizes.view(self.ep_size, self.num_experts_per_ep).sum(dim=-1).tolist()
|
|
output_states, _ = all_to_all_uneven(dispatch_states, input_split_list, output_split_list, self.ep_group)
|
|
output_states = MoeInGradScaler.apply(output_states, self.ep_size)
|
|
|
|
if output_states.size(0) > 0:
|
|
if self.num_experts_per_ep == 1:
|
|
expert = self.experts[self.expert_start_idx]
|
|
output_states = expert(output_states)
|
|
else:
|
|
output_states_splits = output_states.split(output_split_sizes.tolist())
|
|
output_states_list = []
|
|
for i, split_states in enumerate(output_states_splits):
|
|
if split_states.size(0) == 0: # no token routed to this experts
|
|
continue
|
|
expert = self.experts[self.expert_start_idx + i % self.num_experts_per_ep]
|
|
split_states = expert(split_states)
|
|
output_states_list.append(split_states)
|
|
output_states = torch.cat(output_states_list)
|
|
output_states = MoeOutGradScaler.apply(output_states, self.ep_size)
|
|
dispatch_states, _ = all_to_all_uneven(output_states, output_split_list, input_split_list, self.ep_group)
|
|
recover_token_idx = torch.empty_like(flat_topk_token_idx)
|
|
recover_token_idx[flat_topk_token_idx] = torch.arange(
|
|
flat_topk_token_idx.size(0), device=flat_topk_token_idx.device
|
|
)
|
|
|
|
output_hidden_states = dispatch_states[recover_token_idx] # t0 t0 t1 t1 t2 t2
|
|
output_hidden_states = output_hidden_states.view(-1, self.num_experts_per_tok, orig_shape[-1])
|
|
output_hidden_states = (output_hidden_states * topk_experts_weight[:, :, None]).sum(dim=-2) # (B*S, h)
|
|
output_hidden_states = output_hidden_states.view(*orig_shape)
|
|
output_hidden_states = AddAuxiliaryLoss.apply(output_hidden_states, aux_loss)
|
|
if self.config.n_shared_experts is not None:
|
|
output_hidden_states = output_hidden_states + self.shared_experts(identity)
|
|
return output_hidden_states
|
|
|
|
|
|
class DeepseekPipelineForwards:
|
|
"""
|
|
This class serves as a micro library for forward function substitution of Llama models
|
|
under pipeline setting.
|
|
"""
|
|
|
|
@staticmethod
|
|
def deepseek_model_forward(
|
|
self: "DeepseekModel",
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
stage_index: Optional[List[int]] = None,
|
|
shard_config: ShardConfig = None,
|
|
):
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
>>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
logger = logging.get_logger(__name__)
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if stage_manager.is_first_stage():
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
input_shape = hidden_states.shape[:-1]
|
|
batch_size, seq_length = input_shape
|
|
device = hidden_states.device
|
|
|
|
seq_length_with_past = seq_length
|
|
past_key_values_length = 0
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if output_attentions:
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
|
output_hidden_states = False
|
|
if use_cache:
|
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
|
use_cache = False
|
|
|
|
if past_key_values is not None:
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
if position_ids is None:
|
|
position_ids = torch.arange(
|
|
past_key_values_length,
|
|
seq_length + past_key_values_length,
|
|
dtype=torch.long,
|
|
device=device,
|
|
)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
# embed positions, for the first stage, hidden_states is the input embeddings,
|
|
# for the other stages, hidden_states is the output of the previous stage
|
|
if is_flash_attn_2_available():
|
|
# 2d mask is passed through the layers
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
|
else:
|
|
# 4d mask is passed through the layers
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
attention_mask,
|
|
(batch_size, seq_length),
|
|
hidden_states,
|
|
past_key_values_length,
|
|
sliding_window=self.config.sliding_window,
|
|
)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1]
|
|
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
# None for past_key_value
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(decoder_layer),
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
None,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
past_key_value,
|
|
output_attentions,
|
|
use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = (layer_outputs[2 if output_attentions else 1],)
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
if stage_manager.is_last_stage():
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
if stage_manager.is_last_stage():
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
# always return dict for imediate stage
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
}
|
|
|
|
@staticmethod
|
|
def deepseek_for_causal_lm_forward(
|
|
self: "DeepseekForCausalLM",
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
stage_index: Optional[List[int]] = None,
|
|
shard_config: ShardConfig = None,
|
|
):
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
|
|
|
>>> model = DeepseekForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
logger = logging.get_logger(__name__)
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if output_attentions:
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
|
output_hidden_states = False
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
outputs = DeepseekPipelineForwards.deepseek_model_forward(
|
|
self.model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
stage_manager=stage_manager,
|
|
hidden_states=hidden_states,
|
|
stage_index=stage_index,
|
|
)
|
|
past_key_values = None
|
|
|
|
if stage_manager.is_last_stage():
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
# Enable model parallelism
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=None,
|
|
hidden_states=outputs[0],
|
|
attentions=None,
|
|
)
|
|
else:
|
|
out = {}
|
|
hidden_states = outputs.get("hidden_states")
|
|
out["hidden_states"] = hidden_states
|
|
return out
|