mirror of https://github.com/hpcaitech/ColossalAI
96 lines
3.7 KiB
Python
96 lines
3.7 KiB
Python
"""
|
|
Script for Chinese retrieval based conversation system backed by ChatGLM
|
|
"""
|
|
|
|
from typing import Tuple
|
|
|
|
from colossalqa.chain.retrieval_qa.base import RetrievalQA
|
|
from colossalqa.local.llm import ColossalAPI, ColossalLLM
|
|
from colossalqa.memory import ConversationBufferWithSummary
|
|
from colossalqa.mylogging import get_logger
|
|
from colossalqa.prompt.prompt import PROMPT_DISAMBIGUATE_ZH, PROMPT_RETRIEVAL_QA_ZH, SUMMARY_PROMPT_ZH
|
|
from colossalqa.retriever import CustomRetriever
|
|
from langchain import LLMChain
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
class ChineseRetrievalConversation:
|
|
"""
|
|
Wrapper class for Chinese retrieval conversation system
|
|
"""
|
|
|
|
def __init__(self, retriever: CustomRetriever, model_path: str, model_name: str) -> None:
|
|
"""
|
|
Setup retrieval qa chain for Chinese retrieval based QA
|
|
"""
|
|
# Local coati api
|
|
logger.info(f"model_name: {model_name}; model_path: {model_path}", verbose=True)
|
|
colossal_api = ColossalAPI.get_api(model_name, model_path)
|
|
self.llm = ColossalLLM(n=1, api=colossal_api)
|
|
|
|
# Define the retriever
|
|
self.retriever = retriever
|
|
|
|
# Define the chain to preprocess the input
|
|
# Disambiguate the input. e.g. "What is the capital of that country?" -> "What is the capital of France?"
|
|
# Prompt is summarization prompt
|
|
self.llm_chain_disambiguate = LLMChain(
|
|
llm=self.llm,
|
|
prompt=PROMPT_DISAMBIGUATE_ZH,
|
|
llm_kwargs={"max_new_tokens": 30, "temperature": 0.6, "do_sample": True},
|
|
)
|
|
|
|
self.retriever.set_rephrase_handler(self.disambiguity)
|
|
# Define memory with summarization ability
|
|
self.memory = ConversationBufferWithSummary(
|
|
llm=self.llm,
|
|
prompt=SUMMARY_PROMPT_ZH,
|
|
human_prefix="用户",
|
|
ai_prefix="Assistant",
|
|
max_tokens=2000,
|
|
llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True},
|
|
)
|
|
self.memory.initiate_document_retrieval_chain(
|
|
self.llm,
|
|
PROMPT_RETRIEVAL_QA_ZH,
|
|
self.retriever,
|
|
chain_type_kwargs={
|
|
"chat_history": "",
|
|
},
|
|
)
|
|
self.retrieval_chain = RetrievalQA.from_chain_type(
|
|
llm=self.llm,
|
|
verbose=False,
|
|
chain_type="stuff",
|
|
retriever=self.retriever,
|
|
chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_QA_ZH, "memory": self.memory},
|
|
llm_kwargs={"max_new_tokens": 150, "temperature": 0.9, "do_sample": True},
|
|
)
|
|
|
|
def disambiguity(self, input: str):
|
|
out = self.llm_chain_disambiguate.run(input=input, chat_history=self.memory.buffer, stop=["\n"])
|
|
return out.split("\n")[0]
|
|
|
|
@classmethod
|
|
def from_retriever(
|
|
cls, retriever: CustomRetriever, model_path: str, model_name: str
|
|
) -> "ChineseRetrievalConversation":
|
|
return cls(retriever, model_path, model_name)
|
|
|
|
def run(self, user_input: str, memory: ConversationBufferWithSummary) -> Tuple[str, ConversationBufferWithSummary]:
|
|
if memory:
|
|
# TODO add translation chain here
|
|
self.memory.buffered_history.messages = memory.buffered_history.messages
|
|
self.memory.summarized_history_temp.messages = memory.summarized_history_temp.messages
|
|
return (
|
|
self.retrieval_chain.run(
|
|
query=user_input,
|
|
stop=["</答案>"],
|
|
doc_prefix="支持文档",
|
|
rejection_trigger_keywords=["无法回答该问题"],
|
|
rejection_answer="抱歉,根据提供的信息无法回答该问题。",
|
|
).split("\n")[0],
|
|
self.memory,
|
|
)
|