ColossalAI/applications/ColossalChat/coati/trainer/rm.py

244 lines
10 KiB
Python
Executable File

"""
Reward model trianer
"""
import os
from typing import Any, Callable, Optional
import torch
import tqdm
from coati.models import LogSigLoss
from coati.trainer.utils import all_reduce_mean
from coati.utils import AccumulativeMeanMeter, save_checkpoint
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from transformers import PreTrainedTokenizerBase
from colossalai.booster import Booster
from colossalai.cluster import DistCoordinator
from colossalai.utils import get_current_device
from .base import SLTrainer
from .utils import is_rank_0, to_device
class RewardModelTrainer(SLTrainer):
"""
Trainer for PPO algorithm.
Args:
actor (Actor): the actor model in ppo algorithm
ref_model (Critic): the reference model in ppo algorithm
booster (Strategy): the strategy to use for training
actor_optim (Optimizer): the optimizer to use for actor model
actor_lr_scheduler (_LRScheduler): the lr scheduler to use for actor model
tokenizer (PreTrainedTokenizerBase): the tokenizer to use for encoding
max_epochs (int, defaults to 1): the max number of epochs to train
beta (float, defaults to 0.1): the beta parameter in dpo loss
accumulation_steps (int): the number of steps to accumulate gradients
start_epoch (int, defaults to 0): the start epoch, non-zero if resumed from a checkpoint
save_interval (int): the interval to save model checkpoints, default to 0, which means no checkpoint will be saved during trainning
save_dir (str): the directory to save checkpoints
coordinator (DistCoordinator): the coordinator to use for distributed logging
"""
def __init__(
self,
model: Any,
booster: Booster,
optimizer: Optimizer,
lr_scheduler: _LRScheduler,
tokenizer: PreTrainedTokenizerBase,
loss_fn: Optional[Callable] = None,
max_epochs: int = 1,
beta: float = 0.1,
accumulation_steps: int = 1,
start_epoch: int = 0,
save_interval: int = 0,
save_dir: str = None,
coordinator: DistCoordinator = None,
) -> None:
super().__init__(booster, max_epochs=max_epochs, model=model, optimizer=optimizer, start_epoch=start_epoch)
self.actor_scheduler = lr_scheduler
self.tokenizer = tokenizer
self.loss_fn = loss_fn if loss_fn is not None else LogSigLoss(beta=beta)
self.save_interval = save_interval
self.coordinator = coordinator
self.save_dir = save_dir
self.num_train_step = 0
self.accumulation_steps = accumulation_steps
self.device = get_current_device()
self.accumulative_meter = AccumulativeMeanMeter()
def _before_fit(
self,
train_preference_dataloader: DataLoader = None,
eval_preference_dataloader: DataLoader = None,
log_dir: Optional[str] = None,
use_wandb: bool = False,
):
"""
Args:
prompt_dataloader (DataLoader): the dataloader to use for prompt data
pretrain_dataloader (DataLoader): the dataloader to use for pretrain data
"""
self.train_dataloader = train_preference_dataloader
self.eval_dataloader = eval_preference_dataloader
self.writer = None
if use_wandb and is_rank_0():
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
import wandb
self.wandb_run = wandb.init(project="Coati-rm", sync_tensorboard=True)
if log_dir is not None and is_rank_0():
import os
import time
from torch.utils.tensorboard import SummaryWriter
log_dir = os.path.join(log_dir, "rm")
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
self.writer = SummaryWriter(log_dir=log_dir)
def _train(self, epoch):
self.model.train()
step_bar = tqdm.trange(
len(self.train_dataloader) // self.accumulation_steps,
desc=f"Epoch {epoch + 1}/{self.max_epochs}",
disable=not is_rank_0(),
)
for i, batch in enumerate(self.train_dataloader):
batch = to_device(batch, self.device)
(
chosen_input_ids,
chosen_attention_mask,
reject_input_ids,
reject_attention_mask,
) = (
batch["chosen_input_ids"],
batch["chosen_attention_mask"],
batch["reject_input_ids"],
batch["reject_attention_mask"],
)
batch_size = chosen_input_ids.size()[0]
# Concatenate for better parrallelism
reward = self.model(
torch.cat([chosen_input_ids, reject_input_ids], dim=0),
attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask], dim=0),
)
chosen_reward = reward[:batch_size]
reject_reward = reward[batch_size:]
loss = self.loss_fn(chosen_reward, reject_reward).mean()
self.booster.backward(loss=loss, optimizer=self.optimizer)
accuracy = (chosen_reward > reject_reward).float()
# Sync
loss_mean = all_reduce_mean(tensor=loss)
chosen_rewards_mean = all_reduce_mean(tensor=chosen_reward)
rejected_rewards_mean = all_reduce_mean(tensor=reject_reward)
accuracy_mean = all_reduce_mean(tensor=accuracy)
self.accumulative_meter.add("chosen_rewards", chosen_rewards_mean.to(torch.float16).mean().item())
self.accumulative_meter.add("rejected_rewards", rejected_rewards_mean.to(torch.float16).mean().item())
self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item())
self.accumulative_meter.add("accuracy", accuracy_mean.mean().to(torch.float16).item())
if (i + 1) % self.accumulation_steps == 0:
self.optimizer.step()
self.optimizer.zero_grad()
self.actor_scheduler.step()
step_bar.update()
self.num_train_step += 1
# Logging
if self.writer and is_rank_0():
self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), self.num_train_step)
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step)
self.writer.add_scalar(
"train/dist",
self.accumulative_meter.get("chosen_rewards") - self.accumulative_meter.get("rejected_rewards"),
self.num_train_step,
)
self.writer.add_scalar(
"train/reward_chosen", self.accumulative_meter.get("chosen_rewards"), self.num_train_step
)
self.writer.add_scalar(
"train/reward_reject", self.accumulative_meter.get("rejected_rewards"), self.num_train_step
)
self.writer.add_scalar("train/acc", self.accumulative_meter.get("accuracy"), self.num_train_step)
self.accumulative_meter.reset()
# Save checkpoint
if self.save_interval > 0 and (self.num_train_step + 1) % self.save_interval == 0:
self.coordinator.print_on_master("\nStart saving model checkpoint with running states")
save_checkpoint(
save_dir=self.save_dir,
booster=self.booster,
model=self.model,
optimizer=self.optimizer,
lr_scheduler=self.actor_scheduler,
epoch=epoch,
step=i + 1,
batch_size=batch_size,
coordinator=self.coordinator,
)
self.coordinator.print_on_master(
f"Saved checkpoint at epoch {epoch} step {(i + 1)/self.accumulation_steps} at folder {self.save_dir}"
)
step_bar.close()
def _eval(self, epoch):
if self.eval_dataloader is None:
self.coordinator.print_on_master("No eval dataloader is provided, skip evaluation")
return
self.model.eval()
step_bar = tqdm.trange(
len(self.eval_dataloader), desc=f"Epoch {epoch + 1}/{self.max_epochs}", disable=not is_rank_0()
)
with torch.no_grad():
for i, batch in enumerate(self.eval_dataloader):
batch = to_device(batch, self.device)
(
chosen_input_ids,
chosen_attention_mask,
reject_input_ids,
reject_attention_mask,
) = (
batch["chosen_input_ids"],
batch["chosen_attention_mask"],
batch["reject_input_ids"],
batch["reject_attention_mask"],
)
chosen_reward = self.model(chosen_input_ids, attention_mask=chosen_attention_mask)
reject_reward = self.model(reject_input_ids, attention_mask=reject_attention_mask)
loss = self.loss_fn(chosen_reward, reject_reward).mean()
# Sync
loss_mean = all_reduce_mean(tensor=loss)
chosen_rewards_mean = all_reduce_mean(tensor=chosen_reward)
rejected_rewards_mean = all_reduce_mean(tensor=reject_reward)
self.accumulative_meter.add("chosen_rewards", chosen_rewards_mean.to(torch.float16).mean().item())
self.accumulative_meter.add("rejected_rewards", rejected_rewards_mean.to(torch.float16).mean().item())
self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item())
step_bar.update()
msg = "Evaluation Result:\n"
for tag in ["loss", "chosen_rewards", "rejected_rewards"]:
msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n"
msg = (
msg
+ f"distance: {self.accumulative_meter.get('chosen_rewards')-self.accumulative_meter.get('rejected_rewards')}\n"
)
self.coordinator.print_on_master(msg)
os.makedirs(self.save_dir, exist_ok=True)
with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f:
f.write(msg)
step_bar.close()