ColossalAI/applications/ColossalChat/coati/models/loss.py

274 lines
11 KiB
Python
Executable File

"""
loss functions
"""
from typing import Optional, Tuple
import torch
import torch.distributed as dist
import torch.nn as nn
from .utils import masked_mean
class GPTLMLoss(nn.Module):
"""
GPT Language Model Loss
"""
def __init__(self):
super().__init__()
# NOTE: default ignore_index is -100, which is equal to IGNORE_INDEX in sft_dataset.py
self.loss = nn.CrossEntropyLoss()
def forward(self, logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
class PolicyLoss(nn.Module):
"""
Policy Loss for PPO
"""
def __init__(self, clip_eps: float = 0.2, skip_threshold: float = 20.0) -> None:
super().__init__()
self.clip_eps = clip_eps
self.skip_threshold = skip_threshold
def forward(
self,
log_probs: torch.Tensor,
old_log_probs: torch.Tensor,
advantages: torch.Tensor,
action_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
skip = False
ratio_ = ((log_probs - old_log_probs) * action_mask).exp()
# note that if dropout is disabled (recommanded), ratio will always be 1.
if ratio_.mean() > self.skip_threshold:
skip = True
ratio = ratio_.clamp(0.0, 10.0)
surr1 = ratio * advantages
surr2 = ratio.clamp(1 - self.clip_eps, 1 + self.clip_eps) * advantages
loss = -torch.min(surr1, surr2)
loss = masked_mean(loss, action_mask)
loss = loss.mean()
return loss, skip, ratio_.max()
class ValueLoss(nn.Module):
"""
Value Loss for PPO
"""
def __init__(self, clip_eps: float = 0.2) -> None:
super().__init__()
self.clip_eps = clip_eps
def forward(
self,
values: torch.Tensor,
old_values: torch.Tensor,
advantage: torch.Tensor,
action_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
returns = advantage + old_values
values_clipped = old_values + (values - old_values).clamp(-self.clip_eps, self.clip_eps)
surr1 = (values_clipped - returns) ** 2
surr2 = (values - returns) ** 2
loss = torch.max(surr1, surr2) / torch.sum(action_mask)
loss = torch.sum(loss * action_mask)
return 0.5 * loss
class DpoLoss(nn.Module):
"""
Dpo loss
Details: https://arxiv.org/pdf/2305.18290.pdf
SimPO loss:
Details: https://arxiv.org/pdf/2405.14734.pdf
"""
def __init__(self, beta: float = 0.1, gamma: float = 0.0):
"""
Args:
beta: The temperature parameter in the DPO paper.
gamma: The margin parameter in the SimPO paper.
length_normalization: Whether to normalize the loss by the length of chosen and rejected responses.
Refer to the length normalization in the SimPO paper
"""
super().__init__()
self.beta = beta
self.gamma = gamma
def forward(
self,
logprob_actor_chosen: torch.Tensor,
logprob_actor_reject: torch.Tensor,
logprob_ref_chosen: torch.Tensor,
logprob_ref_reject: torch.Tensor,
chosen_mask: torch.Tensor,
reject_mask: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute the DPO/SimPO loss for a batch of policy and reference model log probabilities.
# adapted from https://github.com/huggingface/trl/blob/main/trl/trainer/dpo_trainer.py#L328
Args:
logprob_actor_chosen: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,)
logprob_actor_reject: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,)
logprob_ref_chosen: Log probabilities of the reference model for the chosen responses. Shape: (batch_size,)
logprob_ref_reject: Log probabilities of the reference model for the rejected responses. Shape: (batch_size,)
chosen_mask: Mask tensor indicating which responses were chosen. Shape: (batch_size,)
reject_mask: Mask tensor indicating which responses were rejected. Shape: (batch_size,)
Returns:
A tuple of three tensors: (losses, chosen_rewards, rejected_rewards).
The losses tensor contains the DPO loss for each example in the batch.
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively.
"""
logprob_actor_chosen = logprob_actor_chosen * chosen_mask
logprob_actor_reject = logprob_actor_reject * reject_mask
if logprob_ref_chosen is not None and logprob_ref_reject is not None:
logprob_ref_chosen = logprob_ref_chosen * chosen_mask
logprob_ref_reject = logprob_ref_reject * reject_mask
if len(logprob_ref_chosen.shape) == 2:
ref_logratios = logprob_ref_chosen.sum(-1) - logprob_ref_reject.sum(-1)
else:
ref_logratios = logprob_ref_chosen - logprob_ref_reject
else:
# If no reference model is provided
ref_logratios = 0.0
pi_logratios = logprob_actor_chosen.sum(-1) - logprob_actor_reject.sum(-1)
logits = pi_logratios - ref_logratios - self.gamma / self.beta
losses = -torch.nn.functional.logsigmoid(self.beta * logits)
# Calculate rewards for logging
if logprob_ref_chosen is not None:
chosen_rewards = self.beta * (logprob_actor_chosen.sum(-1) - logprob_ref_chosen.sum(-1)).detach()
else:
chosen_rewards = self.beta * logprob_actor_chosen.sum(-1).detach()
if logprob_ref_reject is not None:
rejected_rewards = self.beta * (logprob_actor_reject.sum(-1) - logprob_ref_reject.sum(-1)).detach()
else:
rejected_rewards = self.beta * logprob_actor_reject.sum(-1).detach()
return losses, chosen_rewards, rejected_rewards
class LogSigLoss(nn.Module):
"""
Pairwise Loss for Reward Model
Details: https://arxiv.org/abs/2203.02155
"""
def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor:
return -torch.nn.functional.logsigmoid(chosen_reward - reject_reward).mean()
class LogExpLoss(nn.Module):
"""
Pairwise Loss for Reward Model
Details: https://arxiv.org/abs/2204.05862
"""
def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor:
loss = torch.log(1 + torch.exp(reject_reward - chosen_reward)).mean()
return loss
class OddsRatioLoss(nn.Module):
"""
Odds Ratio Loss in ORPO
Details: https://arxiv.org/pdf/2403.07691
"""
def forward(
self,
chosen_logp: torch.Tensor,
reject_logp: torch.Tensor,
chosen_loss_mask: torch.Tensor,
reject_loss_mask: torch.Tensor,
) -> torch.Tensor:
chosen_logp = chosen_logp.to(dtype=torch.float32)
reject_logp = reject_logp.to(dtype=torch.float32)
chosen_odds = chosen_logp - torch.log(-torch.exp(chosen_logp) + 1.0001)
chosen_odds_masked = torch.sum(chosen_odds * chosen_loss_mask.float()) / torch.sum(chosen_loss_mask)
reject_odds = reject_logp - torch.log(-torch.exp(reject_logp) + 1.0001)
reject_odds_masked = torch.sum(reject_odds * reject_loss_mask.float()) / torch.sum(reject_loss_mask)
log_odds_ratio = chosen_odds_masked - reject_odds_masked
ratio = torch.log(torch.nn.functional.sigmoid(log_odds_ratio))
return ratio.to(dtype=torch.bfloat16), log_odds_ratio
class KTOLoss(nn.Module):
def __init__(self, beta: float = 0.1, desirable_weight: float = 1.0, undesirable_weight: float = 1.0):
"""
Args:
beta: The temperature parameter in the KTO paper.
desirable_weight: The weight for the desirable responses.
undesirable_weight: The weight for the undesirable
"""
super().__init__()
self.beta = beta
self.desirable_weight = desirable_weight
self.undesirable_weight = undesirable_weight
def forward(
self,
chosen_logps: torch.Tensor,
rejected_logps: torch.Tensor,
kl_logps: torch.Tensor,
ref_chosen_logps: torch.Tensor,
ref_rejected_logps: torch.Tensor,
ref_kl_logps: torch.Tensor,
):
"""
Reference:
https://github.com/huggingface/trl/blob/a2adfb836a90d1e37b1253ab43dace05f1241e04/trl/trainer/kto_trainer.py#L585
Compute the KTO loss for a batch of policy and reference model log probabilities.
Args:
chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,)
rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,)
kl_logps: KL divergence of the policy model. Shape: (batch_size,)
ref_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape: (batch_size,)
ref_rejected_logps: Log probabilities of the reference model for the rejected responses. Shape: (batch_size,)
ref_kl_logps: KL divergence of the reference model. Shape: (batch_size,)
beta: The temperature parameter in the DPO paper.
desirable_weight: The weight for the desirable responses.
undesirable_weight: The weight for the undesirable responses.
Refer to the KTO paper for details about hyperparameters https://arxiv.org/pdf/2402.01306
"""
kl = (kl_logps - ref_kl_logps).mean().detach()
# all gather
dist.all_reduce(kl, op=dist.ReduceOp.SUM)
kl = (kl / dist.get_world_size()).clamp(min=0)
if chosen_logps.shape[0] != 0 and ref_chosen_logps.shape[0] != 0:
chosen_logratios = chosen_logps - ref_chosen_logps
chosen_losses = 1 - nn.functional.sigmoid(self.beta * (chosen_logratios - kl))
chosen_rewards = self.beta * chosen_logratios.detach()
else:
chosen_losses = torch.Tensor([]).to(kl_logps.device)
chosen_rewards = torch.Tensor([]).to(kl_logps.device)
if rejected_logps.shape[0] != 0 and ref_rejected_logps.shape[0] != 0:
rejected_logratios = rejected_logps - ref_rejected_logps
rejected_losses = 1 - nn.functional.sigmoid(self.beta * (kl - rejected_logratios))
rejected_rewards = self.beta * rejected_logratios.detach()
else:
rejected_losses = torch.Tensor([]).to(kl_logps.device)
rejected_rewards = torch.Tensor([]).to(kl_logps.device)
losses = torch.cat((self.desirable_weight * chosen_losses, self.undesirable_weight * rejected_losses), 0).mean()
return losses, chosen_rewards, rejected_rewards, kl