mirror of https://github.com/hpcaitech/ColossalAI
41 lines
1.4 KiB
Python
Executable File
41 lines
1.4 KiB
Python
Executable File
"""
|
|
Critic model
|
|
"""
|
|
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from coati.models import BaseModel
|
|
from transformers import PretrainedConfig
|
|
|
|
|
|
class Critic(BaseModel):
|
|
"""
|
|
Critic model class.
|
|
|
|
Args:
|
|
pretrained (str): path to pretrained model.
|
|
config (PretrainedConfig): PretrainedConfig used to initiate the base model.
|
|
"""
|
|
|
|
def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None:
|
|
super().__init__(pretrained=pretrained, config=config, **kwargs)
|
|
# et last hidden state size with dummy input
|
|
self.value_head = nn.Linear(self.last_hidden_state_size, 1)
|
|
|
|
def forward(self, input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
outputs = self.model(input_ids, attention_mask=attention_mask)
|
|
last_hidden_states = outputs["last_hidden_state"]
|
|
sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), :].type(
|
|
self.value_head.weight.dtype
|
|
)
|
|
values = self.value_head(sequence_hidden_states).squeeze(-1) # ensure shape is (B, sequence length)
|
|
return values
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.get_input_embeddings()
|
|
|
|
def get_output_embeddings(self):
|
|
return self.model.get_output_embeddings()
|