ColossalAI/applications/ColossalChat/coati/models/critic.py

41 lines
1.4 KiB
Python
Executable File

"""
Critic model
"""
from typing import Optional
import torch
import torch.nn as nn
from coati.models import BaseModel
from transformers import PretrainedConfig
class Critic(BaseModel):
"""
Critic model class.
Args:
pretrained (str): path to pretrained model.
config (PretrainedConfig): PretrainedConfig used to initiate the base model.
"""
def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None:
super().__init__(pretrained=pretrained, config=config, **kwargs)
# et last hidden state size with dummy input
self.value_head = nn.Linear(self.last_hidden_state_size, 1)
def forward(self, input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
outputs = self.model(input_ids, attention_mask=attention_mask)
last_hidden_states = outputs["last_hidden_state"]
sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), :].type(
self.value_head.weight.dtype
)
values = self.value_head(sequence_hidden_states).squeeze(-1) # ensure shape is (B, sequence length)
return values
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def get_output_embeddings(self):
return self.model.get_output_embeddings()