You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_data/test_deterministic_dataload...

102 lines
2.8 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os
from functools import partial
from pathlib import Path
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torchvision import transforms
from torch.utils.data import DataLoader
import colossalai
from colossalai.builder import build_dataset, build_transform
from colossalai.context import ParallelMode, Config
from colossalai.core import global_context as gpc
CONFIG = Config(
dict(
train_data=dict(
dataset=dict(
type='CIFAR10',
root=Path(os.environ['DATA']),
train=True,
download=True,
),
dataloader=dict(
num_workers=2,
batch_size=2,
shuffle=True
),
transform_pipeline=[
dict(type='ToTensor'),
dict(type='RandomCrop', size=32),
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]
),
parallel=dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None),
),
seed=1024,
)
)
def run_data_sampler(rank, world_size):
dist_args = dict(
config=CONFIG,
rank=rank,
world_size=world_size,
backend='gloo',
port='29904',
host='localhost'
)
colossalai.launch(**dist_args)
dataset_cfg = gpc.config.train_data.dataset
dataloader_cfg = gpc.config.train_data.dataloader
transform_cfg = gpc.config.train_data.transform_pipeline
# build transform
transform_pipeline = [build_transform(cfg) for cfg in transform_cfg]
transform_pipeline = transforms.Compose(transform_pipeline)
dataset_cfg['transform'] = transform_pipeline
# build dataset
dataset = build_dataset(dataset_cfg)
# build dataloader
dataloader = DataLoader(dataset=dataset, **dataloader_cfg)
data_iter = iter(dataloader)
img, label = data_iter.next()
img = img[0]
if gpc.get_local_rank(ParallelMode.DATA) != 0:
img_to_compare = img.clone()
else:
img_to_compare = img
dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA))
if gpc.get_local_rank(ParallelMode.DATA) != 0:
# this is without sampler
# this should be false if data parallel sampler to given to the dataloader
assert torch.equal(img,
img_to_compare), 'Same image was distributed across ranks and expected it to be the same'
torch.cuda.empty_cache()
@pytest.mark.cpu
def test_data_sampler():
world_size = 4
test_func = partial(run_data_sampler, world_size=world_size)
mp.spawn(test_func, nprocs=world_size)
if __name__ == '__main__':
test_data_sampler()