You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_tensor/common_utils/_utils.py

92 lines
2.7 KiB

import os
import random
import numpy as np
import torch
import torch.distributed as dist
from torch.testing import assert_close
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.tensor import ComputePattern, ComputeSpec, ShardSpec
def set_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def check_equal(A, B):
assert torch.allclose(A, B, rtol=1e-3, atol=1e-1) == True
def replace_parameter_add_grad(layer, weight=None, bias=None):
if weight is not None:
delattr(layer, 'weight')
setattr(layer, 'weight', weight)
layer.weight.requires_grad = True
if bias is not None:
delattr(layer, 'bias')
setattr(layer, 'bias', bias)
layer.bias.requires_grad = True
def broadcast_tensor_chunk(tensor, chunk_size=1, local_rank=0):
dist.broadcast(tensor, src=0)
tensor_chunk = torch.chunk(tensor, chunk_size, dim=-1)[local_rank]
return tensor_chunk.clone()
def tensor_equal(t_a: torch.Tensor, t_b: torch.Tensor, rtol: float = 1e-3, atol: float = 1e-1):
assert_close(t_a, t_b, rtol=rtol, atol=atol)
return True
def tensor_shard_equal(tensor: torch.Tensor,
shard: torch.Tensor,
rank: int,
world_size: int,
rtol: float = 1e-3,
atol: float = 1e-1):
assert tensor.ndim == shard.ndim
if tensor.shape == shard.shape:
return tensor_equal(tensor, shard, rtol, atol)
else:
dims_not_eq = torch.nonzero(torch.tensor(tensor.shape) != torch.tensor(shard.shape))
if dims_not_eq.numel() == 1:
# 1D shard
dim = dims_not_eq.item()
if world_size is None:
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
if rank is None:
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
return tensor_equal(tensor.chunk(world_size, dim)[rank], shard, rtol, atol)
else:
raise NotImplementedError
def split_param_single_dim_tp1d(dim, param, pg):
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
if param.process_group.tp_world_size() == 1:
param.set_process_group(pg)
param.set_tensor_spec(*spec)
def split_param_row_tp1d(param, pg):
split_param_single_dim_tp1d(0, param, pg)
def split_param_col_tp1d(param, pg):
split_param_single_dim_tp1d(-1, param, pg)
def debug_print(ranks, *args):
if dist.get_rank() in ranks:
print(*args)
dist.barrier()