You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/_ops/embedding.py

140 lines
6.3 KiB

import torch.nn.functional as F
from typing import Optional
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.nn.layer.parallel_1d._utils import reduce_input
from colossalai.core import global_context as gpc
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, distspec
from colossalai.context import ParallelMode
from ._utils import GeneralTensor, convert_to_colo_tensor
def colo_embedding_1Dcol(input_tensor: ColoTensor,
weight: ColoTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False) -> ColoTensor:
# embedding_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P)
# Gather splitted lookup table
input_tensor = input_tensor.convert_to_dist_spec(distspec.replicate(weight.spec.get_process_group()))
output_parallel = F.embedding(input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
output_spec = TensorSpec(
distspec.shard(weight.spec.get_process_group(), [-1], [weight.spec.get_process_group_size()]),
ParallelAction(ComputePattern.TP1D))
output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec)
if weight.spec.parallel_action.gather_out:
output = output.convert_to_dist_spec(distspec.replicate(weight.spec.get_process_group()))
return output
def colo_embedding_1Drow(input_tensor: ColoTensor,
weight: ColoTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False) -> ColoTensor:
# embedding_1Drow split the weight(lookup table) to (num_embeddings/P, embedding_dim)
# Find index in this shard and mask those not here
# Reduce all
input_tensor = input_tensor.convert_to_dist_spec(distspec.replicate(weight.spec.get_process_group()))
tensor_parallel_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
num_embeddings_per_partition = weight.size(0)
vocab_start_index = tensor_parallel_rank * num_embeddings_per_partition
vocab_end_index = vocab_start_index + num_embeddings_per_partition
# Build the mask.
input_mask = (input_tensor < vocab_start_index) | \
(input_tensor >= vocab_end_index)
# Mask the input.
# TODO(jzy) masked_input may be an activation managed by ColoTensor.
masked_input = input_tensor.clone() - vocab_start_index
masked_input[input_mask] = 0
partial_output = F.embedding(masked_input,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
# Mask the output embedding.
partial_output[input_mask, :] = 0.
# Reduce across all the model parallel GPUs.
output = reduce_input(partial_output, ParallelMode.PARALLEL_1D)
output = ColoTensor.from_torch_tensor(output, spec=TensorSpec(distspec.replicate(weight.spec.get_process_group())))
return output
def colo_embedding_1d(mode: str,
input_tensor: ColoTensor,
weight: ColoTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False) -> ColoTensor:
assert mode in ('row', 'col')
funcs = {'row': colo_embedding_1Drow, 'col': colo_embedding_1Dcol}
return funcs[mode](input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
@colo_op_impl(F.embedding)
def colo_embedding(input_tensor: GeneralTensor,
weight: GeneralTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False):
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding``.
This method looks up an embedding table.
"""
input_tensor, weight = tuple(map(convert_to_colo_tensor, (input_tensor, weight)))
# Handle differen parallel actions.
if not weight.has_spec(): # No Model Parallel Applied
assert weight.spec.is_gathered(), 'Invalid weight spec for native embedding op'
return ColoTensor.from_torch_tensor(
F.embedding(input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse))
elif weight.spec.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
if weight.spec.is_1D_row():
mode = 'row'
elif weight.spec.is_1D_col():
mode = 'col'
else:
raise NotImplementedError
return colo_embedding_1d(mode,
input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
else:
raise NotImplementedError