mirror of https://github.com/hpcaitech/ColossalAI
98 lines
3.6 KiB
Python
98 lines
3.6 KiB
Python
import torch
|
|
from torch.fx import GraphModule
|
|
import torch.nn as nn
|
|
import pytest
|
|
|
|
from colossalai.fx.proxy import ColoProxy
|
|
from colossalai.fx.tracer.tracer import ColoTracer
|
|
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
|
from colossalai.auto_parallel.solver.op_handler.conv_handler import CONV_STRATEGIES_LIST
|
|
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
|
|
from colossalai.auto_parallel.solver.options import SolverOptions
|
|
from copy import deepcopy
|
|
|
|
|
|
class ConvModel(nn.Module):
|
|
|
|
def __init__(self, c_in, c_out):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(c_in, c_out, kernel_size=3)
|
|
|
|
def forward(self, x):
|
|
x = x * 2
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
def test_strategies_constructor():
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
mesh_shape = (2, 2)
|
|
# [[0, 1]
|
|
# [2, 3]]
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
|
entire_shape = torch.Size((4, 16, 64, 64))
|
|
|
|
tracer = ColoTracer()
|
|
model = ConvModel(16, 32)
|
|
input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
|
|
# graph():
|
|
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
|
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
|
|
# %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {})
|
|
# return conv
|
|
graph = tracer.trace(root=model, meta_args=input_sample)
|
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
|
gm.recompile()
|
|
|
|
solver_options = SolverOptions(fast=True)
|
|
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
|
|
|
assert strategies_constructor.leaf_strategies == []
|
|
assert strategies_constructor.strategy_map == {}
|
|
strategies_constructor.build_strategies_and_cost()
|
|
|
|
# check leaf_strategies
|
|
|
|
# In fast mode, placeholder node only has replica strategy.
|
|
assert strategies_constructor.leaf_strategies[0][0].name == 'Replica Placeholder'
|
|
|
|
# Second node is mul which is a element-wise node, therefore the output sharding spec is same as input sharding spec.
|
|
assert strategies_constructor.leaf_strategies[1][0].name == '[R, R, R, R] -> [R, R, R, R]_0'
|
|
|
|
# Third node is conv.
|
|
conv_check_list = deepcopy(CONV_STRATEGIES_LIST)
|
|
for strategy in strategies_constructor.leaf_strategies[2]:
|
|
conv_check_list.remove(strategy.name)
|
|
assert len(conv_check_list) == 0
|
|
|
|
# In fast mode, output node only has replica strategy.
|
|
assert strategies_constructor.leaf_strategies[3][0].name == 'Replica Output'
|
|
|
|
# check strategy_map
|
|
|
|
nodes = [node for node in graph.nodes]
|
|
# In fast mode, placeholder node only has replica strategy.
|
|
x = nodes[0]
|
|
assert strategies_constructor.strategy_map[x][0].name == 'Replica Placeholder'
|
|
|
|
# Second node is mul which is a element-wise node, therefore the output sharding spec is same as input sharding spec.
|
|
mul = nodes[1]
|
|
assert strategies_constructor.strategy_map[mul][0].name == '[R, R, R, R] -> [R, R, R, R]_0'
|
|
|
|
# Third node is conv.
|
|
conv = nodes[2]
|
|
conv_check_list = deepcopy(CONV_STRATEGIES_LIST)
|
|
for strategy in strategies_constructor.strategy_map[conv]:
|
|
conv_check_list.remove(strategy.name)
|
|
assert len(conv_check_list) == 0
|
|
|
|
# In fast mode, output node only has replica strategy.
|
|
output = nodes[3]
|
|
assert strategies_constructor.strategy_map[output][0].name == 'Replica Output'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_strategies_constructor()
|