ColossalAI/tests/test_auto_parallel/test_strategies_constructor.py

98 lines
3.6 KiB
Python

import torch
from torch.fx import GraphModule
import torch.nn as nn
import pytest
from colossalai.fx.proxy import ColoProxy
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
from colossalai.auto_parallel.solver.op_handler.conv_handler import CONV_STRATEGIES_LIST
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
from colossalai.auto_parallel.solver.options import SolverOptions
from copy import deepcopy
class ConvModel(nn.Module):
def __init__(self, c_in, c_out):
super().__init__()
self.conv = nn.Conv2d(c_in, c_out, kernel_size=3)
def forward(self, x):
x = x * 2
x = self.conv(x)
return x
def test_strategies_constructor():
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
entire_shape = torch.Size((4, 16, 64, 64))
tracer = ColoTracer()
model = ConvModel(16, 32)
input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
# %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {})
# return conv
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
solver_options = SolverOptions(fast=True)
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
assert strategies_constructor.leaf_strategies == []
assert strategies_constructor.strategy_map == {}
strategies_constructor.build_strategies_and_cost()
# check leaf_strategies
# In fast mode, placeholder node only has replica strategy.
assert strategies_constructor.leaf_strategies[0][0].name == 'Replica Placeholder'
# Second node is mul which is a element-wise node, therefore the output sharding spec is same as input sharding spec.
assert strategies_constructor.leaf_strategies[1][0].name == '[R, R, R, R] -> [R, R, R, R]_0'
# Third node is conv.
conv_check_list = deepcopy(CONV_STRATEGIES_LIST)
for strategy in strategies_constructor.leaf_strategies[2]:
conv_check_list.remove(strategy.name)
assert len(conv_check_list) == 0
# In fast mode, output node only has replica strategy.
assert strategies_constructor.leaf_strategies[3][0].name == 'Replica Output'
# check strategy_map
nodes = [node for node in graph.nodes]
# In fast mode, placeholder node only has replica strategy.
x = nodes[0]
assert strategies_constructor.strategy_map[x][0].name == 'Replica Placeholder'
# Second node is mul which is a element-wise node, therefore the output sharding spec is same as input sharding spec.
mul = nodes[1]
assert strategies_constructor.strategy_map[mul][0].name == '[R, R, R, R] -> [R, R, R, R]_0'
# Third node is conv.
conv = nodes[2]
conv_check_list = deepcopy(CONV_STRATEGIES_LIST)
for strategy in strategies_constructor.strategy_map[conv]:
conv_check_list.remove(strategy.name)
assert len(conv_check_list) == 0
# In fast mode, output node only has replica strategy.
output = nodes[3]
assert strategies_constructor.strategy_map[output][0].name == 'Replica Output'
if __name__ == '__main__':
test_strategies_constructor()